[1]
Pusztai, A.; Bardocsz, S.; Ewen, S.W.B. In: Bioadhesive Drug Delivery Systems- Fundamentals, Novel Approaches, and Development; Mathiowitz, E.; Chickering III, D.E.; Lehr, C-M., Eds.; Marcel Dekker: New York, 1999, Vol. 98, pp. 387-407.
[2]
Smart, J.D. Lectin-mediated drug delivery in the oral cavity. Adv. Drug Deliv. Rev., 2004, 56, 481-489.
[3]
Juan, L.L.; Recio, V.G.; Lopez, P.J.; Juan, T.G.; Cordoba-Diaz, M.; Cordoba-Diaz, D. Pharmaceutical applications of lectins. J. Drug Deliv. Sci. Technol., 2017, 42, 126-133.
[4]
Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremião, M.P.D. Mucoadhesive drug delivery systems. Braz. J. Pharm. Sci., 2010, 46(1), 1-17.
[5]
Bruschi, M.L. Strategies to modify the drug delivery from pharmaceutical systems; Woodheading Publishing-Elsevier: London, 2015.
[6]
García-Díaz, M.; Birch, D.; Wan, F.; Nielsen, H.M. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv. Drug Deliv. Rev., 2018, 124, 107-124.
[7]
Farokhzad, O.C.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58, 1456-1459.
[8]
Campbell, B.J. In: Bioadhesive Drug Delivery Systems- Fundamentals, Novel Approaches, and Development; Mathiowitz, E.; Chickering III, D.E.; Lehr, C-M., Eds.; Marcel Dekker: New York, 1999, Vol. 98, pp. 85-130.
[9]
Cagliari, R.; Kremer, F.S.; da Silva Pinto, L. Bauhinia lectins: biochemical properties and biotechnological applications. Int. J. Biol. Macromol., 2018, 119, 811-820.
[10]
Stillmark, H. Üeber ricin, ein giftiges ferment aus den samen von Ricinus comm. L. und einigen anderen Euphorbiaceen, MD Dissertation, University of Dorpat: Dorpat,. 1888.
[11]
Sharon, N. Lectins: Past, present and future. Biochem. Soc. Trans., 2008, 36(6), 1457-1460.
[12]
Bies, C.; Lehr, C.M.; Woodley, J.F. Lectin-mediated drug targeting: history and applications. Adv. Drug Deliv. Rev., 2004, 56(4), 425-435.
[13]
Neumann, D.; Lehr, C-M.; Lenhof, H-P.; Kohlbacher, O. Computational modeling of the sugar-lectin interaction. Adv. Drug Deliv. Rev., 2004, 56, 467-457.
[14]
Gabor, F.; Bogner, E.; Weissenboeck, A.; Wirth, M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv. Drug Deliv. Rev., 2004, 56, 459-480.
[15]
Hägerström, H. Polymer gels as pharmaceutical dosage forms:
rheological performance and physicochemical interactions at the
gel–mucus interface for formulations intended for mucosal drug delivery.
Acta Universitatis Upsaliensis. Uppsala: Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Pharmacy,
Series 293; 2003, 76 pp.
[16]
Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 2009, 71, 505-518.
[17]
Bruschi, M.L.; de Freitas, O. Oral bioadhesive drug delivery systems. Drug Dev. Ind. Pharm., 2005, 31, 293-310.
[18]
Bruschi, M.L.; Jones, D.S.; Panzeri, H.; Gremião, M.P.D.; de Freitas, O.; Lara, E.H.G. Semisolid systems containing propolis for the treatment of periodontal disease: In vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J. Pharm. Sci., 2007, 96(8), 2074-2089.
[19]
Bruschi, M.L.; de Freitas, O.; Lara, E.H.G.; Panzeri, H.; Gremião, M.P.D.; Jones, D.S. Precursor system of liquid crystalline phase containing propolis microparticles for the treatment of periodontal disease: Development and characterization. Drug Dev. Ind. Pharm., 2008, 34, 267-278.
[20]
Bassi da Silva, J.; Ferreira, S.B.S.; de Freitas, O.; Bruschi, M.L. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev. Ind. Pharm., 2017, 43(7), 1053-1070.
[21]
Apfelthaler, C.; Gassenbauer, P.; Weisse, S.; Gabor, F.; Wirth, M. lectin mediated delivery system for the intravesical treatment of bladder diseases using poly-(L)-glutamic acid as polymeric backbone. Eur. J. Pharm. Sci., 2018, 111, 376-382.