Abstract
New approaches for manufacturing and application of peptide arrays on planar surfaces are emerging, thereby opening advanced opportunities to probe the expression and function of the proteome. In complementing DNA and protein array analyses, peptide fragment screening directly addresses functional protein interaction sites, leading to a detailed insight into the discovered molecular recognition events, placing them in the context of the whole genome, and even allowing rapid determination of the chemical nature of these interactions. This information can then be transferred into powerful small peptide tools that interfere with these interactions in vivo and help to link targets with phenotypes. With the spreading of new peptide array tools, peptide screening will extend its impact on modern genome-driven molecular biology. This will advance the systematic discovery and validation of new pharmaceutical targets as well as the development of potent molecular diagnostics for medical and ecological monitoring.
Keywords: Combinatorial chemistry, Conformational epitope, Genomics, functional, Linear epitope, Microarray, Molecular recognition, Photolithographic synthesis, Proteomics