[1]
Singh, R.K.; Lee, J.K.; Selvaraj, C.; Singh, R.; Li, J.; Kim, S.Y.; Kalia, V.C. Protein engineering approaches in the post-genomic era. Curr. Protein Pept. Sci., 2018, 19, 5-15.
[2]
Shukla, P. Futuristic protein engineering: Developments and avenues. Curr. Protein Pept. Sci., 2018, 19, 3-4.
[4]
Baweja, M.; Nain, L.; Kawarabayasi, Y.; Shukla, P. Current technological improvements in enzymes toward their biotechnological applications. Front. Microbiol., 2016, 7, 965.
[5]
Kumar, V.; Baweja, M.; Liu, H.; Shukla, P. Microbial enzyme engineering: Applications and perspectives. In: Recent Advances in Applied Microbiology; Shukla, P., Ed.; Springer: Singapore, 2017; pp. 259-273.
[6]
Chiu, M.L.; Gilliland, G.L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol., 2016, 38, 163-173.
[7]
Jemli, S.; Ayadi-Zouari, D.; Hlima, H.B.; Bejar, S. Biocatalysts: Application and engineering for industrial purposes. Crit. Rev. Biotechnol., 2016, 36, 246-258.
[8]
Manas, N.H.A.; Jonet, M.A.; Murad, A.M.A.; Mahadi, N.M.; Illias, R.M. Modulation of transglycosylation and improved malto-oligosaccharide synthesis by protein engineering of maltogenic amylase from Bacillus lehensis G1. Process Biochem., 2015, 50, 1572-1580.
[9]
Basu, M.; Kumar, V.; Shukla, P. Recombinant approaches for microbial xylanases: Recent advances and perspectives. Curr. Protein Pept. Sci., 2018, 19, 87-99.
[10]
Zorn, K.; Oroz-Guinea, I.; Brundiek, H.; Bornscheuer, U.T. Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res., 2016, 63, 153-164.
[11]
Nisha, M.; Satyanarayana, T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl. Microbiol. Biotechnol., 2016, 100, 5661-5679.
[12]
Martinez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; Liers, C. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv., 2017, 35, 815-831.
[13]
Kumar, V.; Dangi, A.K.; Shukla, P. Engineering thermostable microbial xylanases toward its industrial applications. Mol. Biotechnol., 2018, 60, 226-235.
[14]
Foo, J.L.; Ching, C.B.; Chang, M.W.; Leong, S.S.J. The imminent role of protein engineering in synthetic biology. Biotechnol. Adv., 2012, 30, 541-549.
[15]
Glasscock, C.J.; Lucks, J.B.; De Lisa, M.P. Engineered protein machines: Emergent tools for synthetic biology. Cell Chem. Biol., 2016, 23, 45-56.
[16]
Erb, T.J.; Jones, P.R.; Bar-Even, A. Synthetic metabolism: Metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol., 2017, 37, 56-62.
[17]
Irfan, M.; Gonzalez, C.F.; Raza, S.; Rafiq, M.; Hasan, F.; Khan, S.; Shah, A.A. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis. Enzyme Microb. Technol., 2018, 111, 38-47.
[18]
Wang, X.; Du, J.; Zhang, Z.Y.; Fu, Y.J.; Wang, W.M.; Liang, A.H. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin. Appl. Microbiol. Biotechnol., 2018, 102(22), 9647-9656.
[19]
Courtois, F.; Agrawal, N.J.; Lauer, T.M.; Trout, B.L. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs, 2016, 8, 99-112.
[20]
Kim, D.S.; Choi, J.R.; Ko, J.; Kim, K. Re-engineering of bacterial luciferase; For new aspects of bioluminescence. Curr. Protein Pept. Sci., 2018, 19, 16-21.
[21]
El Khatib, M.; Martins, A.; Bourgeois, D.; Colletier, J.P.; Adam, V. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci. Rep., 2016, 6, 18459.
[22]
Gaw, S.L.; Sakala, G.; Nir, S.; Saha, A.; Xu, Z.J.; Lee, P.S.; Reches, M. Rational design of amphiphilic peptides and its effect on antifouling performance. Biomacromolecules, 2018, 19, 3620-3627.
[23]
Viña‐Gonzalez, J.; Elbl, K.; Ponte, X.; Valero, F.; Alcalde, M. Functional expression of aryl‐alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution. Biotechnol. Bioeng., 2018, 115, 1666-1674.
[24]
Tang, Z.; Jin, W.; Sun, R.; Liao, Y.; Zhen, T.; Chen, H.; Wu, Q.; Gou, L.; Li, C. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Enzyme Microb. Technol., 2018, 108, 74-81.
[25]
Li, G.; Maria-Solano, M.A.; Romero-Rivera, A.; Osuna, S.; Reetz, M.T. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem. Commun., 2017, 53, 9454-9457.
[26]
Liu, Z.Q.; Wu, L.; Zhang, X.J.; Xue, Y.P.; Zheng, Y.G. Directed evolution of carbonyl reductase from Rhodosporidium toruloides and its application in stereoselective synthesis of tert-butyl (3 R, 5 S)-6-chloro-3, 5-dihydroxyhexanoate. J. Agric. Food Chem., 2017, 65, 3721-3729.
[27]
Larue, K.; Melgar, M.; Martin, V.J. Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. Biotechnol. Biofuels, 2016, 9, 52.
[28]
Axarli, I.; Muleta, A.W.; Chronopoulou, E.G.; Papageorgiou, A.C.; Labrou, N.E. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability. Biochim. Biophys. Acta-General Subjects, 2017, 1861, 3416-3428.
[29]
Tian, K.; Tai, K.; Chua, B.J.W.; Li, Z. Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresour. Technol., 2017, 245, 1491-1497.
[30]
Sirois, A.R.; Deny, D.A.; Baierl, S.R.; George, K.S.; Moore, S.J. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding. PLoS One, 2018, 13, e0197029.
[31]
Valetti, F.; Gilardi, G. Improvement of biocatalysts for industrial and environmental purposes by saturation mutagenesis. Biomolecules, 2013, 3, 778-811.
[32]
Shen, J.W.; Qi, J.M.; Zhang, X.J.; Liu, Z.Q.; Zheng, Y.G. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis-(±)-dimethyl 1-acetylpiperidine-2, 3-dicarboxylate. Catal. Sci. Technol., 2018, 8, 4718-4725.
[33]
Chen, K.C.; Zheng, M.M.; Pan, J.; Li, C.X.; Xu, J.H. Protein engineering and homologous expression of Serratia marcescens lipase for efficient synthesis of a pharmaceutically relevant chiral epoxyester. Appl. Biochem. Biotechnol., 2017, 183, 543-554.
[34]
Engström, K.; Nyhlén, J.; Sandström, A.G.; Bäckvall, J.E. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters. J. Am. Chem. Soc., 2010, 132, 7038-7042.
[35]
Zhou, C.; Ye, J.; Xue, Y.; Ma, Y. Directed evolution and structural analysis of alkaline pectate lyase from alkaliphilic Bacillus sp. N16-5 for improvement of thermostability for efficient ramie degumming. Appl. Environ. Microbiol., 2015, 81, 5714-5723.
[36]
Zhao, H.Y.; Feng, H. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol., 2018, 18, 34.
[37]
Chen, H.; Li, M.; Liu, C.; Zhang, H.; Xian, M.; Liu, H. Enhancement of the catalytic activity of Isopentenyldiphosphateisomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb. Cell Fact., 2018, 17, 65.
[38]
Gregor, C.; Sidenstein, S.C.; Andresen, M.; Sahl, S.J.; Danzl, J.G.; Hell, S.W. Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Sci. Rep., 2018, 8, 2724.
[39]
Jung, E.; Park, B.G.; Yoo, H.W.; Kim, J.; Choi, K.Y.; Kim, B.G. Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid. Appl. Microbiol. Biotechnol., 2018, 102, 269-277.
[40]
Arkadash, V.; Yosef, G.; Shirian, J.; Cohen, I.; Horev, Y.; Grossman, M.; Sagi, I.; Radisky, E.S.; Shifman, J.M.; Papo, N. Development of high-affinity and high-specificity inhibitors of metalloproteinase 14 through computational design and directed evolution. J. Biol. Chem., 2017, 292, 3481-3495.
[41]
Gulati, K.; Poluri, K.M. An overview of computational and experimental methods for designing novel proteins. Recent Pat. Biotechnol., 2016, 10, 235-263.
[42]
Burton, A.J.; Thomson, A.R.; Dawson, W.M.; Brady, R.L.; Woolfson, D.N. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem., 2016, 8, 837-844.
[43]
Thomas, F.; Dawson, W.M.; Lang, E.J.; Burton, A.J.; Bartlett, G.J.; Rhys, G.G.; Mulholland, A.J.; Woolfson, D.N. De novo-designed α-helical barrels as receptors for small molecules. ACS Synth. Biol., 2018, 7, 1808-1816.
[44]
Shen, C.; Iskenderian, A.; Lundberg, D.; He, T.; Palmieri, K.; Crooker, R.; Deng, Q.; Traylor, M.; Gu, S.; Rong, H.; Ehmann, D. Protein engineering on human recombinant follistatin: Enhancing pharmacokinetic characteristics for therapeutic application. J. Pharmacol. Exp. Ther., 2018, 366, 291-302.
[45]
Pandelieva, A.T.; Baran, M.J.; Calderini, G.F.; McCann, J.L.; Tremblay, V.; Sarvan, S.; Davey, J.A.; Couture, J.F.; Chica, R.A. Brighter red fluorescent proteins by rational design of triple-decker motif. ACS Chem. Biol., 2016, 11, 508-517.
[46]
Gu, H.; Liao, Y.; Zhang, J.; Wang, Y.; Liu, Z.; Cheng, P.; Wang, X.; Zou, Q.; Gu, J. Rational design and evaluation of an artificial Escherichia coli K1 protein vaccine candidate based on the structure of OmpA. Front. Cell. Infect. Microbiol., 2018, 8, 172.
[47]
Wu, X.; Tian, Z.; Jiang, X.; Zhang, Q.; Wang, L. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Appl. Microbiol. Biotechnol., 2018, 102, 249-260.
[48]
Chen, X.; Li, W.; Ji, P.; Zhao, Y.; Hua, C.; Han, C. Engineering the conserved and noncatalytic residues of a thermostable β-1, 4-endoglucanase to improve specific activity and thermostability. Sci. Rep., 2018, 8, 2954.
[49]
Molina‐Espeja, P.; Cañellas, M.; Plou, F.J.; Hofrichter, M.; Lucas, F.; Guallar, V.; Alcalde, M. Synthesis of 1‐naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem, 2016, 17, 341-349.
[50]
Li, Y.X.; Yi, P.; Yan, Q.J.; Qin, Z.; Liu, X.Q.; Jiang, Z.Q. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. Biotechnol. Biofuels, 2017, 10, 143.
[51]
Kan, S.J.; Lewis, R.D.; Chen, K.; Arnold, F.H. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science, 2016, 354, 1048-1051.
[52]
Chen, Z.; Geng, F.; Zeng, A.P. Protein design and engineering of a de novo pathway for microbial production of 1, 3‐propanediol from glucose. Biotechnol. J., 2015, 10, 284-289.
[53]
Donnelly, A.E.; Murphy, G.S.; Digianantonio, K.M.; Hecht, M.H. A de novo enzyme catalyzes a life-sustaining reaction in Escherichia coli. Nat. Chem. Biol., 2018, 14, 253-255.
[54]
Zheng, T.; Martínez, F.P.; Storm, I.M.; Rombouts, W.; Sprakel, J.; de Vries, R.; Schirhagl, R. De novo designed proteins for colloidal stabilization and improvement of cellular uptake. Biophys. J., 2018, 114, 362.
[55]
Xia, Y.; Cui, W.; Cheng, Z.; Peplowski, L.; Liu, Z.; Kobayashi, M.; Zhou, Z. Improving the thermostability and catalytic efficiency of the subunit‐fused nitrile hydratase by semi‐rational engineering. ChemCatChem, 2018, 10, 1370-1375.
[56]
Fladischer, P.; Weingartner, A.; Blamauer, J.; Darnhofer, B.; Birner‐Gruenberger, R.; Kardashliev, T.; Ruff, A.J.; Schwaneberg, U.; Wiltschi, B. A semi‐rationally engineered bacterial pyrrolysyl‐tRNAsynthetase genetically encodes phenyl azide chemistry. Biotechnol. J., 2018. 10.1002/biot.201800125
[Epub ahead of print].
[57]
Zhang, W.H.; Otting, G.; Jackson, C.J. Protein engineering with unnatural amino acids. Curr. Opin. Struct. Biol., 2013, 23, 581-587.
[58]
Ravikumar, Y.; Nadarajan, S.P.; Yoo, T.H.; Lee, C.S.; Yun, H. Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol., 2015, 33, 462-470.
[59]
Neumann-Staubitz, P.; Neumann, H. The use of unnatural amino acids to study and engineer protein function. Curr. Opin. Struct. Biol., 2016, 38, 119-128.
[60]
van Eldijk, M.B.; van Hest, J.C. Residue-specific incorporation of noncanonical amino acids for protein engineering.Noncanonical Amino Acids; Lemke, E.A., Ed.; Humana Press: New York, 2018, pp. 137-145.
[61]
Grinstead, K.M.; Rowe, L.; Ensor, C.M.; Joel, S.; Daftarian, P.; Dikici, E.; Zingg, J.M.; Daunert, S. Red-shifted aequorin variants incorporating non-canonical amino acids: Applications in in vivo imaging. PLoS One, 2016, 11, e0158579.
[62]
Damborsky, J.; Brezovsky, J. Computational tools for designing and engineering enzymes. Curr. Opin. Chem. Biol., 2014, 19, 8-16.
[63]
Verma, R.; Schwaneberg, U.; Roccatano, D. Computer-aided protein directed evolution: A review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotechnol. J., 2012, 2, e201209008.
[64]
Ebert, M.C.; Pelletier, J.N. Computational tools for enzyme improvement: why everyone can–and should–use them. Curr. Opin. Chem. Biol., 2017, 37, 89-96.
[65]
Dvorak, P.; Bednar, D.; Vanacek, P.; Balek, L.; Eiselleova, L.; Stepankova, V.; Sebestova, E. KunovaBosakova, M.; Konecna, Z.; Mazurenko, S.; Kunka, A. Computer‐assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng., 2018, 115, 850-862.
[66]
Mills, J.H.; Sheffler, W.; Ener, M.E.; Almhjell, P.J.; Oberdorfer, G.; Pereira, J.H.; Parmeggiani, F.; Sankaran, B.; Zwart, P.H.; Baker, D. Computational design of a homotrimericmetalloprotein with a trisbipyridyl core. Proc. Natl. Acad. Sci. USA, 2016, 113, 15012-15017.
[67]
Li, R.; Wijma, H.J.; Song, L.; Cui, Y.; Otzen, M.; Tian, Y.E.; Du, J.; Li, T.; Niu, D.; Chen, Y.; Feng, J. Computational redesign of enzymes for regio-and enantioselectivehydroamination. Nat. Chem. Biol., 2018, 14, 664-670.
[68]
Sammond, D.W.; Kastelowitz, N.; Donohoe, B.S.; Alahuhta, M.; Lunin, V.V.; Chung, D.; Sarai, N.S.; Yin, H.; Mittal, A.; Himmel, M.E.; Guss, A.M. An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme. Biotechnol. Biofuels, 2018, 11, 189.
[69]
Wu, B.; Wijma, H.J.; Song, L.; Rozeboom, H.J.; Poloni, C.; Tian, Y.; Arif, M.I.; Nuijens, T.; Quaedflieg, P.J.; Szymanski, W.; Feringa, B.L. Versatile peptide C-terminal functionalization via a computationally engineered peptide amidase. ACS Catal., 2016, 6, 5405-5414.
[70]
Choi, Y.H.; Kim, J.H.; Park, B.S.; Kim, B.G. Solubilization and iterative saturation mutagenesis of α1, 3‐fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol. Bioeng., 2016, 113, 1666-1675.
[71]
Dangi, A.K.; Sinha, R.; Dwivedi, S.; Gupta, S.K.; Shukla, P.S. Cell line techniques and gene editing tools for antibody production: A Review. Front. Pharmacol., 2018, 9, 630.
[72]
Gupta, S.K.; Shukla, P. Gene editing for cell engineering: trends and applications. Crit. Rev. Biotechnol., 2017, 37, 672-684.
[73]
Garst, A.D.; Bassalo, M.C.; Pines, G.; Lynch, S.A.; Halweg-Edwards, A.L.; Liu, R.; Liang, L.; Wang, Z.; Zeitoun, R.; Alexander, W.G.; Gill, R.T. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol., 2017, 35, 48-55.
[74]
Brödel, A.K.; Isalan, M.; Jaramillo, A. Engineering of biomolecules by bacteriophage directed evolution. Curr. Opin. Biotechnol., 2018, 51, 32-38.
[75]
Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; Liu, D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556, 57-63.
[76]
Hubbard, B.P.; Badran, A.H.; Zuris, J.A.; Guilinger, J.P.; Davis, K.M.; Chen, L.; Tsai, S.Q.; Sander, J.D.; Joung, J.K.; Liu, D.R. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods, 2015, 12, 939-942.
[77]
Wang, T.; Badran, A.H.; Huang, T.P.; Liu, D.R. Continuous directed evolution of proteins with improved soluble expression. Nat. Chem. Biol., 2018, 14, 972-980.
[79]
Mazurenko, S.; Stourac, J.; Kunka, A.; Nedeljković, S.; Bednar, D.; Prokop, Z. Damborsky, J. CalFitter: A web server for analysis of protein thermal denaturation data. Nucleic Acids Res., 2018, 46, W344-W349.
[80]
Sumbalova, L.; Stourac, J.; Martinek, T.; Bednar, D.; Damborsky, J. HotSpot Wizard 3.0: Web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res., 2018, 46, W356-W362.
[81]
Wrenbeck, E.E.; Faber, M.S.; Whitehead, T.A. Deep sequencing methods for protein engineering and design. Curr. Opin. Struct. Biol., 2017, 45, 36-44.
[82]
Kumar, V.; Kumar, A.; Chhabra, D.; Shukla, P. Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools. Bioresour. Technol., 2019. 10.1016/j.biortech.2018.09.115
Epub 2018 Sep 22.
[83]
Singh, P.K.; Shukla, P. Systems biology as an approach for deciphering microbial interactions. Brief. Funct. Genomics, 2015, 14, 166-168.
[84]
Gupta, S.K.; Srivastava, S.K.; Sharma, A.; Nalage, V.H.; Salvi, D.; Kushwaha, H.; Chitnis, N.B.; Shukla, P. Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One, 2017, 12, e0181455.
[85]
Baweja, M.; Singh, P.K.; Sadaf, A.; Tiwari, R.; Nain, L.; Khare, S.K.; Shukla, P. Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem., 2017, 58, 199-203.