[1]
Brower, D.L.; Brower, S.M.; Hayward, D.C.; Ball, E.E. Molecular evolution of integrins: Genes encoding integrin beta subunits from a coral and a sponge. Int. Rev. Cytol., 1999, 191, 257-284.
[2]
Hynes, R.O. Integrins: A family of cell surface receptors. Cell, 1987, 48(4), 549-554.
[3]
Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell, 2002, 110(6), 673-687.
[4]
Plow, E.F.; Haas, T.A.; Zhang, L.; Loftus, J.; Smith, J.W. Ligand binding to integrins. J. Biol. Chem., 2000, 275(29), 21785-21788.
[5]
Stanley, P.; McDowall, A.; Bates, P.A.; Brashaw, J.; Hogg, N. The second domain of intercellular adhesion molecule-1 (ICAM-1) maintains the structural integrity of the leucocyte function-associated antigen-1 (LFA-1) ligand-binding site in the first domain. Biochem. J., 2000, 351, 79-86.
[6]
Kotovuori, A.; Pessa-Morikawa, T.; Kotovuori, P.; Nortamo, P.; Gahmberg, C.G. ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J. Immunol., 1999, 162(11), 6613-6620.
[7]
Neelamegham, S.; Taylor, A.D.; Shankaran, H.; Smith, C.W.; Simon, S.I. Shear and time-dependent changes in Mac-1, LFA-1, and ICAM-3 binding regulate neutrophil homotypic. J. Immunol., 2000, 164(7), 3798-3805.
[8]
Hermand, P.; Huet, M.; Callebau, I.; Gane, P.; Ihanus, E.; Gahmberg, C.G.; Cartron, J.P.; Bailly, P. Binding sites of leukocyte beta 2 integrins (LFA-1, Mac-1) on the human ICAM-4/LW blood group protein. J. Biol. Chem., 2000, 275, 26002-26010.
[9]
Tian, L.; Kilgannon, P.; Yoshihara, Y.; Mori, K.; Gallatin, W.M.; Carpén, O.; Gahmberg, C.G. Binding of T lymphocytes to hippocampal neurons through ICAM-5 (telencephalin) and characterization of its interaction with the leukocyte integrin CD11a/CD18. J. Immunol., 2000, 30(3), 810-818.
[10]
Schwartz, M.A.; Schaller, M.D.; Ginsberg, M.H. Integrins: Emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol., 1995, 11, 549-599.
[11]
Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin ligands at a glance. J. Cell Sci., 2006, 119(19), 3901-3903.
[12]
van-der-Flier, A.; Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res., 2001, 305(3), 285-298.
[13]
Ruggiero, F.; Comte, J.; Cabanas, C.; Garrone, R. Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J. Cell Sci., 1996, 109(7), 1865-1874.
[14]
Velling, T.; Kusche-Gulberg, M.; Sejersen, T.; Gulberg, D. cDNA cloning and chromosomal localization of human α 11 integrin a collagen-binding, I domain-containing, β 1- associated integrin α-chain present in muscle tissues. J. Biol. Chem., 1999, 274, 25735-25742.
[15]
Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol., 2007, 8(5), 215.
[16]
Hogg, N.; Bates, P.A. Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol., 2000, 19(3), 211-222.
[17]
Tronik-Le Roux, D.; Rollot, V.; Poujol, C.; Kortulewski, T.; Nurden, P.; Marguerie, G. Thrombastenic mice generated by replacement of integrin alpha (IIb) gene: Demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment. Blood, 2000, 96(4), 1399-1408.
[18]
Eliceiri, B.; Cheresh, D.A. The role of αv integrins during angiogenesis: Insights into potential mechanisms of action and clinical development. J. Clin. Invest., 1999, 103(9), 1227-1230.
[19]
Woodley, D.T.; Burgeson, R.E.; Lunstrum, G.P.; Bruckner-Tuderman, L.; Reese, M.; Briggaman, R.A. Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII collagen. J. Clin. Invest., 1988, 81(3), 683-687.
[20]
Pulkkinen, L.; Kim, D.U.; Uitto, J. Epidermolysis bullosa with pyloric atresia: Novel mutations in the beta4 integrin gene (ITGB4). Am. J. Pathol., 1998, 152(1), 157-166.
[21]
Pulkkinen, L.; Kimonis, V.E.; Xu, Y.; Spanou, E.N.; McLean, I.W.H.; Uitto, J. Homozygous α6 integrin mutation in junctional epidermolysis bullosa with congenital duodenal atresia. Hum. Mol. Genet., 1997, 6(5), 669-674.
[22]
Vogan, K. ITGA3 and epithelial integrity. Nat. Genet., 2012, 10, 229-234.
[23]
Georges-Labousse, E.; Messaddeq, N.; Yehia, G.; Cadalbert, L.; Dierich, A.; Le Meur, M. Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet., 1996, 13, 370-373.
[24]
Rognoni, E.; Ruppert, R.; Fässler, R. The kindlin family: Functions, signaling properties and implications for human disease. J. Cell Sci., 2016, 129, 17-27.
[25]
Fine, J.D.; Eady, R.A.; Bauer, E.A.; Bauer, J.W.; Bruckner-Tuderman, L.; Heagerty, A.; Hintner, H.; Hovnanian, A.; Jonkman, M.F.; Leigh, I.; McGrath, J.A.; Mellerio, J.E.; Murrell, D.F.; Shimizu, H.; Uitto, J.; Vahlquist, A.; Woodley, D.; Zambruno, G. The classification of inherited Epidermolysis Bullosa (EB): Report of the third international consensus meeting on diagnosis and classification of EB. J. Am. Acad. Dermatol., 2008, 58(6), 931-950.
[26]
Bates, R.C.; Bellovin, D.I.; Brown, C.; Maynard, E.; Wu, B.; Kawakatsu, H.; Sheppard, D.; Oettgen, P.; Mercurio, A.M. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest., 2005, 115(2), 339-347.
[27]
Hazelbag, S.; Kenter, G.G.; Gorter, A.; Dreef, E.J.; Koopman, L.A.; Violette, S.M.; Weinreb, P.H.; Fleuren, G.J. Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol., 2007, 212(3), 316-324.
[28]
Gruber, G.; Hess, J.; Stiefel, C.; Aebersold, D.M.; Zimmer, Y.; Greiner, R.H.; Studer, V.; Altermatt, H.J.; Hlushchuk, R.; Djonov, V. Correlation between the tumoral expression of β3-intergrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer, 2005, 92, 41-46.
[29]
Friedrichs, K.; Ruiz, P.; Franke, F.; Gille, I.; Trepe, H.J.; Imhof, B.A. High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res., 1995, 55, 901-906.
[30]
McCabe, N.P.; De, S.; Vasanji, A.; Brainard, J.; Byzova, T.V. Prostate cancer specific integrin αv β3 modulates bone metastatic growth and tissue remodeling. Oncogene, 2007, 26, 6238-6243.
[31]
Slack-Davis, J.K.; Atkins, K.A.; Harrer, C.; Hershey, D.E.; Conaway, M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritonaeal metastasis. Cancer Res., 2009, 69(4), 1469-1476.
[32]
Nip, J.; Shibata, H.; Loskutoff, D.J.; Cheresh, D.A.; Brodt, P. Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin. J. Clin. Invest., 1992, 90(4), 1406-1413.
[33]
Takayama, S.; Ishii, S.; Ikeda, T.; Masamura, S.; Doi, M.; Kitajima, M. The relationship between bone metatasis from human breast cancer and integrin αvβ3 expression. Anticancer Res., 2005, 25, 79-83.
[34]
Hosotani, R.; Kawaguchi, M.; Masui, T.; Koshiba, T.; Ida, J.; Fujimoto, K.; Wada, M.; Doi, R.; Imamura, M. Expression of integrin v3 in pancreatic carcinoma: Relation to MMP-2 activation and lymph node metastasis. Pancreas, 2002, 25(2), e30-e35.
[35]
Landen, C.N.; Kim, T.J.; Lin, Y.G.; Merritt, W.M.; Kamat, A.A.; Han, L.Y.; Spannuth, W.A.; Nick, A.M.; Jennnings, N.B.; Kinch, M.S.; Tice, D.; Sood, A.K. Tumor-selective response to antibody-mediated targeting of αvβ3 integrin in ovarian cancer. Neoplasia, 2008, 10(11), 1259-1267.
[36]
Inman, G.J. Switching TGFbeta from a tumor suppressor to a tumor promoter. Curr. Opin. Genet. Dev., 2011, 21, 93-99.
[37]
Yang, L.; Moses, H.L. Transforming growth factor beta: Tumor suppressor or promoter? Are host immune cells the answer? Cancer Res., 2008, 68, 9107-9111.
[38]
Connolly, E.C.; Freimuth, J.; Akhurst, R.J. Complexities of TGF-beta targeted cancer therapy. Int. J. Biol. Sci., 2012, 8, 964-978.
[39]
Bates, R.C.; Bellovin, D.I.; Brown, C.; Maynard, E.; Wu, B.; Kawakatsu, H.; Sheppard, D.; Oettgen, P.; Mercurio, A.M. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest., 2005, 115, 339-347.
[40]
Elayadi, A.N.; Samli, K.N.; Prudkin, L.; Liu, Y.H.; Bian, A.; Xie, X.J.; Wistuba, I.I.; Roth, J.A.; McGuire, M.J.; Brown, K.C. A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res., 2007, 67, 5889-5895.
[41]
Zhang, Z.Y.; Xu, K.S.; Wang, J.S.; Yang, G.Y.; Wang, W.; Wang, J.Y.; Niu, W.B.; Liu, E.Y.; Mi, Y.T.; Niu, J. Integrin alphanvbeta6 acts as a prognostic indicator in gastric carcinoma. Clin. Oncol., 2008, 20, 61-66.
[42]
Lian, P.L.; Liu, Z.; Yang, G.Y.; Zhao, R.; Zhang, Z.Y.; Chen, Y.G.; Zhuang, Z.N.; Xu, K.S. Integrin alphavbeta6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J. Gastroenterol., 2016, 22, 3852-3859.
[43]
Moore, K.M.; Thomas, G.J.; Duffy, S.W.; Warwick, J.; Gabe, R.; Chou, P.; Ellis, I.O.; Green, A.R.; Haider, S.; Brouilette, K.; Saha, A.; Vallath, S.; Bowen, R.; Chelala, C.; Eccles, D.; Tapper, W.J.; Thompson, A.M.; Quinlan, P.; Jordan, L.; Gillett, C.; Brentnall, A.; Violette, S.; Weinreb, P.H.; Kendrew, J.; Barry, S.T.; Hart, I.R.; Jones, J.L.; Marshall, J.F. Therapeutic targeting of integrin alphavbeta6 in breast cancer. J. Natl. Cancer Inst., 2014, 106, 8.
[44]
Guo, W.; Giancotti, F.G. Integrin signaling during tumor progression. Mol. Cell. Biol., 2004, 5, 816-826.
[45]
Danen, E.H.J. Integrin signaling as a cancer drug target. Int. J. Cell Biol., 2013, 1-14.
[46]
Hamidi, H.; Pietila, M.; Ivaska, I. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer, 2016, 115, 1017-1023.
[47]
Carter, A. Integrins as target: First phase III trial lauches, but question remain. J. Natl. Cancer Inst., 2010, 102(10), 675-677.
[48]
Coleman, K.R.; Braden, G.A.; Willingham, M.C.; Sane, D.C. Vitaxin, a humanized monoclonal antibody to the vitronectin receptor (avb3), reduces neointimal hyperplasia and total vessel area after balloon injury in hypercholesterolemic rabbits. Circ. Res., 1999, 84, 1268-1276.
[49]
Wu, H.; Beuerlein, G.; Nie, Y.; Smith, H.; Lee, B.A.; Hensler, M.; Huse, W.D.; Watkins, J.D. Stepwise in vitro affinity maturation of vitaxin, an αvβ3-specific humanized mAb. Proc. Natl. Acad. Sci., 1998, 95(11), 6037-6042.
[50]
Ricart, A.D.; Tolcher, A.W.; Liu, G.; Holen, K.; Schwartz, G.; Albertini, M.; Weiss, G.; Yazji, S.; Ng, C.; Wilding, G. Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clin. Cancer Res., 2008, 14(23), 7924-7929.
[51]
Alfred, A.; Kang, J.S.; Jacobs, V.N.; Ross, S.J.; Rooney, C.N.; Smith, R.; Rinkenberger, J.; Cao, A.; Churchman, A.; Marshall, J.F.; Weir, H.M.; Bedian, V.; Blakey, D.C.; Foltz, I.N.; Barry, S.T. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene, 2013, 32, 4406-4416.
[52]
Funahashi, Y.; Sugi, N.H.; Semba, T.; Yamamoto, Y.; Hamaoka, S.; Tsukahara-Tamai, N.; Ozawa, Y.; Tsuruoka, A.; Nara, K.; Takahashi, K.; Okabe, T.; Kamata, J.; Owa, T.; Ueda, N.; Haneda, T.; Yonaga, M.; Yoshimatsu, K.; Wakabayashi, T. Sulfonamide Derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Res., 2002, 62(21), 6116-6123.
[53]
Dechantsreiter, M.A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S.L.; Kessler, H. N-methylated cyclic RGD peptides as highly active and selective αVβ3 integrin antagonists. J. Med. Chem., 1999, 42, 3033-3040.
[54]
Hutchinson, J.H.; Halczenko, W.; Brashear, K.M.; Breslin, M.J.; Coleman, P.J.; Duong, T.; Fernandez-Metzler, C.; Gentile, M.A.; Fisher, J.E.; Hartman, G.D.; Huff, J.R.; Kimmel, D.B.; Leu, C.T.; Meissner, R.S. Merkle.; Nagy, K.; Pennypacker, B.; Perkins, J.J.; Prueksaritanont, T.; Rodan, G.A.; Varga, S.L.; Wesolowski, G.A.; Zartman, A.E.; Rodan, S.B.; Duggan, M.E. Nonpeptide alphavbeta3 antagonists. In vitro and in vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis. J. Med. Chem., 2003, 46, 4790-4798.
[55]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358, 2039-2049.
[56]
Friedlander, M.; Brooks, P.C.; Shaffer, R.W.; Kincaid, C.M.; Varner, J.A.; Cheresh, D.A. Definition of two angiogenic pathways by distinct alpha v integrins. Science, 1995, 270, 1500-1502.
[57]
Brooks, P.C.; Montgomery, A.M.; Rosenfeld, M.; Reisfeld, R.A.; Hu, T.; Klier, G.; Cheresh, D.A. Integrin alphav beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994, 79, 1157-1164.
[58]
Vermorken, J.B.; Peyrade, F.; Krauss, J.; Mesía, R.; Remenar, E.; Gauler, T.C.; Keilholz, U.; Delord, J.P.; Schafhausen, P.; Erfán, J.; Brümmendorf, T.H.; Iglesias, L.; Bethe, U.; Hicking, C.; Clement, P.M. Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilenglitide in recurrent/metastatic squamous cell carcinoma of head and neck: Results of the randomized phase I/II ADVANTAGE trial (phase II part). Ann. Oncol., 2014, 25(3), 682-688.
[59]
Vansteenkiste, J.; Barlesi, F.; Walker, C.F.; Bennouna, J.; Gridelli, C.; Goekkurt, E.; Verhoeven, D.; Szczesna, A.; Feurer, M.; Milanowski, J.; Germonpre, P.; Lena, H.; Atanackovic, D.; Krzakowski, M.; Hicking, C.; Straub, J.; Picard, M.; Schuette, W.; O’Byrne, K. Cilenglitide combined with cetuximab and platinum- based chemotherapy as first-line treatment in advanced Non-Small-Cell Lung Cancer (NSCLC) patients: Results of an open-label, randomized, controlled phase II study (CERTO). Ann. Oncol., 2015, 26(8), 1734-1740.
[60]
Alva, A.; Slovin, S.; Daignault, S.; Carducci, M.; Dipaola, R.; Pienta, K.; Agus, D.; Cooney, K.; Chen, A.; Smith, D.C.; Hussain, M. Phase II study of cilenglitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium. Invest. New Drugs, 2012, 30(2), 749-757.
[61]
Mikkelsen, T.; Brodie, C.; Finniss, S.; Berens, M.E.; Rennert, J.L.; Nelson, K.; Lemke, N.; Brown, S.L.; Hahn, D.; Neuteboom, B.; Goodman, S.L. Radiation sensitization of glioblastoma by cilenglitide has unanticipated schedule-dependency. Int. J. Cancer, 2008, 124(11), 2719-2727.
[62]
Readon, D.A.; Fink, K.L.; Mikkelsen, T.; Cloughesy, T.F.; O’Neill, A.; Plotkin, S.; Glantz, M.; Ravin, P.; Raizer, J.J.; Rich, K.M.; Schiff, D.; Shapiro, W.R.; Burdette-Radoux, S.; Dropcho, E.J.; Wittemer, S.M.; Nippgen, J.; Picard, M.; Nabors, L.B. Randomised Phase II study of cilenglitide, an integrin-targetnig arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol., 2008, 26(34), 5610-5617.
[63]
Gvozdenovic, A.; Boro, A.; Meier, D.; Bode-Lesniewska, B.; Born, W.; Muff, R.; Bruno Fuchs, B. Targeting αvβ3 and αvβ5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model. Oncotarget, 2016, 7(34), 55141-55154.
[64]
Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; Steinbach, J.P.; Wick, W.; Tarnawski, R.; Nam, D.H.; Hau, P.; Weyerbrock, A.; Taphoorn, M.J.; Shen, C.C.; Rao, N.; Thurzo, L.; Herrlinger, U.; Gupta, T.; Kortmann, R.D.; Adamska, K.; McBain, C.; Brandes, A.A.; Tonn, J.C.; Schnell, O.; Wiegel, T.; Kim, C.Y.; Nabors, L.B.; Reardon, D.A.; van den Bent, M.J.; Hicking, C.; Markivskyy, A.; Picard, M.; Weller, M. Cienglitide combined with standard treatment for patients with newly diagnosed gliblastoma with metylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomized, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1100-1108.
[65]
Elez, E.; Kocakova, I.; Hohler, T.; Martens, U.M.; Bokemeyer, C.; Van Cutsem, E.; Melichar, B.; Smakal, M.; Csőszi, T.; Topuzov, E.; Orlova, R.; Tjulandin, S.; Rivera, F.; Straub, J.; Bruns, R.; Quaratino, S.; Tabernero, J. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomized phase I/II POSEIDON trial. Ann. Oncol., 2014, 26(1), 132-140.
[66]
Maha, H.; Miller, K.; Rybicka, I.; Bruns, R. Primary outcomes of the placebo- controlled phase 2 study PERSEUS (NCT 1360840) investigating two dose regimens of abituzumab (DI17E6, EMD 525797) in the treatment of chemotherapy-naïve patients (pts) with asympthomatic or mildly symptomatic metastatic castration- resistant prostate cancer (mCRPC). J. Clin. Oncol., 2014, 32(5), 5030.
[68]
Heidenreich, A.; Rawal, S.K.; Szkarlat, K.; Bogdanova, N.; Dirix, L.; Stenzl, A.; Welslau, M.; Wang, G.; Dawkins, F.; de Boer, C.J.; Schrijvers, D. A randomized, double-blind, multicenter, phase 2 study of human monoclonal antibody to human αv integrins (intetumumab) in combination with docetaxel and prednisone for first-line- treatment of patients with metastatic castration-resistant prostate cancer. Ann. Oncol., 2013, 24(2), 329-336.
[69]
O’Day, S.; Pavlick, A.; Loquai, C.; Lawson, D.; Gutzmer, R.; Richards, J.; Schadendorf, D.; Thompson, J.A.; Gonzalez, R.; Trefzer, U.; Mohr, P.; Ottensmeier, C.; Chao, D.; Zhong, B.; de-Boer, C.J.; Uhlar, C.; Marshall, D.; Gore, M.E.; Lang, Z.; Hait, W.; Ho, P. A randomised, phase II study of intetumumab, an anti-av-integrin mAb, alone and with dacarbazine in stage IV melanoma. Br. J. Cancer, 2011, 105(3), 346-352.
[70]
Gutheil, J.C.; Campbell, T.N.; Pierce, P.R.; Watkins, J.D.; Huse, W.D.; Bodkin, D.J.; Cheresh, D.A. Targeted antiangiogenic therapy for cancer using Vitaxin: A humanized monoclonal antibody to the integrin alphavbeta3. Clin. Cancer Res., 2000, 6(8), 63056-63061.
[71]
Hersey, P.; Sosman, J.; O’Day, S.; Richards, J.; Bedikian, A.; Gonzalez, R.; Sharfman, W.; Weber, R.; Logan, T.; Buzoianu, M.; Hammershaimb, L.; Kirkwood, J.M. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer, 2010, 16(6), 1526-1534.
[72]
Pickarski, M.; Gleason, A.; Bednar, B.; Duong, L.T. Orally active ανβ3 integrin inhibitor MK-0429 reduces melanoma metastasis. Oncol. Rep., 2015, 33, 2737-2745.
[73]
Rosenthal, M.A.; Davidson, P.; Rolland, F.; Campone, M.; Xue, L.; Mehta, A.; He, W.; Lombardi, A. Evaluation of the safety, pharmacokinetics and treatment effects of an ανβ3 integrin inhibitor on bone turnover and disease activity in men with hormone-refractory prostate cancer and bone metastases. Asia Pac. J. Clin. Oncol., 2010, 6(1), 42-48.
[74]
Mita, M.; Kelly, K.R.; Mita, A.; Ricart, A.D.; Romero, O.; Tolcher, A.; Hook, L.; Okereke, C.; Krivelevich, I.; Rossignol, D.P.; Phase, I. Study of E7820, an oral inhibitor of integrin α-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin. Cancer Res., 2011, 17(1), 193-200.
[75]
Moore, K.M.; Thomas, G.J.; Duffy, S.W.; Warwick, J.; Gabe, R.; Chou, P.; Ellis, I.O.; Green, A.R.; Haider, S.; Brouilette, K.; Saha, A.; Vallath, S.; Bowen, R.; Chelala, C.; Eccles, D.; Tapper, W.J.; Thompson, A.M.; Quinlan, P.; Jordan, L.; Gillett, C.; Brentnall, A.; Violette, S.; Weinreb, P.H.; Kendrew, J.; Barry, S.T.; Hart, I.R.; Jones, J.L.; Marshall, J.F. Therapeutic targeting of integrin αvβ6 in breast cancer. J. Natl. Cancer Inst., 2014, 106, 1-14.
[76]
Samardzija, C.; Luwor, R.B.; Quinn, M.A.; Kannourakis, G.; Findlay, J.K.; Ahmed, N. Coalition of Oct 4A and β1 integrins infaciliating metastasis in ovarian cancer. BMC Cancer, 2016, 16, 432.
[77]
Barua, A.; Yellapa, A.; Bitterman, P.; Bahr, J.M.; Sharma, S.; Hales, D.B.; Luborsky, J.L.; Abramowicz, J.S. Use of contrastenhanced ultrasound imaging with microbubbles targeted to αvβ3 integrins to enhance detection of early-stage ovarian tumors. J. Clin. Oncol., 2011, 29(Suppl) abstr 5076.
[78]
Wei, Y.; Liu, N.; Huang, Y.; Hu, X.; Yuan, S. Can 18F-alfatide micro-PET predict the radiotherapy response in Lewis lung carcinoma tumor-bearing C57BL/6 mice? J. Clin. Oncol., 2017, 35e23011
[82]
Reynolds, L.E.; Wyder, L.; Lively, J.C.; Taverna, D.; Robinson, S.D.; Huang, X.; Sheppard, D.; Hynes, R.O.; Hodivala-Dilke, K.M. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med., 2002, 8, 27-34.
[83]
Reynolds, A.R.; Reynolds, L.E.; Nagel, T.E.; Lively, J.C.; Robinson, S.D.; Hicklin, D.J.; Bodary, S.C.; Hodivala-Dilke, K.M. Elevated flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res., 2004, 64, 8643-8650.
[84]
Reynolds, A.R.; Hart, I.R.; Watson, A.R.; Welti, J.C.; Silva, R.G.; Robinson, S.D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M.C. Stimulation of tumor growth and angiogenesis by lowconcentrations of rgd-mimetic integrin inhibitors. Nat. Med., 2009, 15, 392-400.
[85]
Wong, P.P.; Demircioglu, F.; Ghazaly, E.; Alrawashdeh, W.; Stratford, M.R.; Scudamore, C.L.; Cereser, B.; Crnogorac-Jurcevic, T.; McDonald, S.; Elia, G.; Hagemann, T.; Kocher, H.M.; Hodivala-Dilke, K.M. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell, 2015, 27, 123-137.
[86]
Hezel, A.F.; Deshpande, V.; Zimmerman, S.M.; Contino, G.; Alagesan, B.; O’Dell, M.R.; Rivera, L.B.; Harper, J.; Lonning, S.; Brekken, R.A.; Bardeesy, N. TGF-beta and alphavbeta6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res., 2012, 72, 4840-4845.
[87]
Campbell, M.R.; Zhang, H.; Ziaee, S.; Ruiz-Saenz, A.; Gulizia, N.; Oeffinger, J.; Amin, D.N.; Ahuja, D.; Moasser, M.M.; Park, C.C. Effective treatment of HER2-amplified breast cancer by targeting HER3 and β1 integrin. Breast Cancer Res. Treat., 2016, 155(3), 431-440.
[88]
Skopec, R. Integrin inhibitor drugs: New therapy against metastasis. J. Biol. Biomark. Diagn, 2016, 7(5), 1-3.