[1]
S. Guanglu, S. Zhichao, L. Jinlai, Z. Suxia, and H. Yongjun, "Feature selection method based on maximum information coefficient and approximate Markov blanket", Acta Automatica Sinica, vol. 43, pp. 795-805, 2017.
[2]
S. Guanglu, X. Yibo, D. Yingfei, W. Dongsheng, and L. Chenglong, "A novel hybrid method for effectively classifying encrypted traffic In ", Proceedings of IEEE Globecom Miami, USA,
2010, pp. 597-602.
[3]
S. Guanglu, L. Shaobo, C. Teng, L. Xuhang, and Z. Suxia, "Active learning method for Chinese spam filtering", Int. J. Perform. Eng., vol. 13, pp. 511-518, 2017.
[4]
J.Y. Li, J. Xue, and Y.F. Gong, Shared hidden layer combination for speech recognition systems. US Patent 20150310858, 2015.
[5]
S.L.P. Monteiro, Method and means to improve the effects of electrical cell and neuron stimulation with random stimulation in both location and time. US Patent 20170007828A1, 2017.
[6]
A. Shyr, R. Urtasun, and M.I. Jordan, "Sufficient dimensionality reduction for visual sequence classification In ", Proceedings of Twenty-third IEEE Conference on Computer Vision and Pattern Recognition, 2010pp. 3610-3617
[7]
D.A.A.G. Singh, S.A.A. Balamurugan, and E.J. Leavline, "An unsupervised feature selection algorithm with feature ranking for maximizing performance of the classifiers", Inter. J. Automation Computing, vol. 12, pp. 511-517, 2015.
[8]
Y. Koren, and L. Carmel, "Robust linear dimensionality reduction", IEEE Trans. Vis. Comput. Graph., vol. 10, no. 4, pp. 459-470, 2004.
[9]
F.K. Zaman, A.A. Shafie, and Y.M. Mustafah, "Robust face recognition against expressions and partial occlusions", Inter. J. Automation Comput., vol. 13, pp. 319-337, 2016.
[10]
A.M. Posadas, F. Vidal, F. de Miguel, G. Alguacil, J. Pena, J.M. Ibanez, and J. Morales, "Spatial temporal analysis of a seismic series using the principal components method", J. Geophys. Res., vol. 98, pp. 1923-1932, 1993.
[11]
I.T. Jolliffe, Principal component analysis.. Technometrics. Vol.45, pp. 276, 2003.
[12]
P. Belhumeour, J. Hespanha, and D. Kriegman, "Eigenfaces versus fisherfaces: recognition using class specific linear projection", IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 711-720, 1997.
[13]
H. Na, M.S. Park, and J.Y. Choi, "Linear boundary discriminant analysis", Pattern Recognit., vol. 43, pp. 929-936, 2010.
[14]
T. Cox, and M. Cox, Multi-dimensional scaling., Chapman & Hall: London, UK, 1994.
[15]
B. Scholkopf, A.J. Smola, and K.R. Muller, "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput., vol. 10, pp. 1299-1319, 1998.
[16]
S.T. Roweis, and L.K. Saul, "Nonlinear dimensionality reduction by locally linear embedding", Science, vol. 290, pp. 2323-2326, 2000.
[17]
B. Tenenbaum, V. de Silva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, vol. 290, pp. 2319-2323, 2000.
[18]
Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and representation", Neural Comput., vol. 15, pp. 1373-1396, 2003.
[19]
X. He, and P. Niyogi, "Locality preserving projections", Adv. Neural Inf. Process. Syst., vol. 16, pp. 153-160, 2004.
[20]
Z. Zhang, and H. Zha, "Principal manifolds and nonlinear dimension reduction via local tangent space alignment", SIAM J. Sci. Comput., vol. 26, pp. 313-338, 2005.
[21]
Y. Bengio, J. Paiement, P. Vincent, O. Dellallaeu, L. Roux, and M. Quimet, "Out-of sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering", Adv. Neural Inf. Process. Syst., vol. 16, pp. 177-184, 2004.
[22]
S. He, D. Cai, S. Yan, and H. Zhang, "Neighborhood Preserving Embedding In ", Proceedings of IEEE International Conference of Computer Vision, 2005pp. 1208-1213
[23]
E. Kokiopoulou, and Y. Saad, Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. In IEEE Trans. Pattern Anal. Mach. Intell.. 2007, pp. 2143-2156.
[24]
J.A. Lee, and M. Verleysen, “Nonlinear dimensionality reduction,” Information Science and Statistics., Springer, 2007.
[25]
B. Shaw, and T. Jebara, "Structure preserving embedding In ", Proceedings of the 26th International Conference on Machine Learning, 2009pp. 937-944
[26]
T.H. Zhang, D.C. Tao, X.L. Li, and J. Yang, "Patch alignment for dimensionality reduction. In ", IEEE Trans. Knowl. Data Eng.. 2009, pp. 1299-1313.
[27]
B. Li, A. Artemiou, and L. Li, "Principal support vector machine for linear and nonlinear sufficient dimension reduction", Ann. Stat., vol. 39, pp. 3182-3210, 2011.
[28]
D.L. Niu, J.G. Dy, and M.I. Jordan, "Dimensionality reduction for spectral clustering In ", Proceedings of the Fourteenth Conference on Artificial Intelligence and Statistics (AISTATS) Ft. Lauderdale 2011, pp. 552-560.
[29]
H. Wang, F. Sha, and M.I. Jordan, "Unsupervised kernel dimension reduction", Adv. Neural Inf. Process. Syst. (NIPS), vol. 23, pp. 2379-2387, 2011.
[30]
D.S. Genaro, C.D. German, and C.P. Jose, "Locally linear embedding based on correntropy measure for visualization and classification", Neurocomputing, vol. 80, pp. 19-30, 2012.
[31]
A.B. Musa, "PCA, KPCA and ICA for dimensionality reduction in logistic regression", Int. J. Mach. Learn. Cybern., vol. 5, pp. 861-873, 2013.
[32]
R. Murad, Z. Anazida, and A.M. Mohd, "An adaptive and efficient dimension reduction model for multivariate wireless sensor networks applications", Appl. Soft Comput., vol. 13, pp. 1978-1996, 2013.
[33]
Y. Song, W. Cai, and H. Huang, "Large margin local estimate with applications to medical image classification", IEEE Trans. Med. Imaging, vol. 34, pp. 1362-1377, 2015.
[34]
F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: a unified embedding for face recognition and clustering In ", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015pp. 815-823
[35]
D. Valsesia, G. Coluccia, and T. Bianchi, “Compressed fingerprint
matching and camera identification via random projections”. InIEEE Transactions on Information Forensics and Security. 2015,
pp. 1472-1485.
[36]
A.K. Nassirtoussi, "S. “Aghabozorgi, and T.Y. Wah.”Text mining of news-headlines for FOREX market prediction: a multi-layer dimension reduction algorithm with semantics and sentiment", Expert Syst. Appl., vol. 42, pp. 306-324, 2015.
[37]
E. Levina, and P.J. Bickel, "Maximum likelihood estimation of intrinsic dimension", Adv. Neural Infor. Procss. Sys., vol. 17, pp. 777-784, 2005.
[38]
D.B. Graham, and N.M. Allinson, Characterizing virtual eigensignatures for general purpose face recognition Face Recognit. m Theory Appl.. pp. 446-456, 1998.
[39]
H.Y. Shen, and Q.C. Li, "Seismic wave field separation and noise attenuation in linear domain via singular value decomposition (SVD)", SEG International Exposition and 79th Annual Meeting, Houston, Texas, USA, 2009.