[1]
Golfakhrabadi, F.; Abdollahi, M.; Ardakani, M.R.; Saeidnia, S.; Akbarzadeh, T.; Ahmadabadi, A.N.; Ebrahimi, A.; Yousefbeyk, F.; Hassanzadeh, A. Khanavi Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats. M. Pharm. Biol., 2014, 52, 1335-1340.
[2]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[3]
Huang, L.; Yuan, X.; Yu, D.; Lee, K.H.; Chen, C.H. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology, 2005, 332, 623-628.
[4]
Sonmez, F.; Kurt, B.Z.; Gazioglu, I.; Basile, L.; Dag, A.; Cappello, V.; Ginex, T.; Kucukislamoglu, M.; Guccione, S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32, 285-297.
[5]
Stefanova, T.H.; Nikolova, N.J.; Toshkova, R.A.; Neychev, H.O. Antitumor and immunomodulatory effect of coumarin and 7-hydroxycoumarin against Sarcoma 180 in mice. J. Exp. Ther. Oncol., 2007, 6, 107-115.
[6]
P , Sivaguru.; R , Sandhiya.; M , Adhiyaman.; A , Lalitha. Synthesis and antioxidant properties of novel 2H-chromene-3-carboxylate and 3-acetyl-2H-chromene derivatives. Tetrahedron Lett., 2016, 57(23), 2496-2501.
[7]
Argotte-Ramos, R.; Ramirez-Avila, G.; Mdel, C.R-G.; Ovilla-Munoz, M.; Lanz-Mendoza, H.; Rodríguez, M.H.; Gonzalez-Cortazar, M.; Alvarez, L. Antimalarial 4-Phenylcoumarins from the Stem Bark of Hintonia latiflora. J. Nat. Prod., 2006, 69, 1442-1444.
[8]
Madhu, G.; Sudhakar, M.; Kumar, K.S.; Reddy, G.R.; Sravani, A.; Ramakrishna, K.; Rao, C.P. Synthesis of pyrazole-substituted chromene analogues with selective anti-leukemic activity. Russ. J. Gen. Chem., 2017, 87(10), 2421-2428.
[9]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and Antioxidant Activities of Coumarins from the Roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14, 939-952.
[10]
Thomas, V.; Giles, D.; Basavarajaswamy, G.P.M.; Das, A.K.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Med. Chem., 2017, 17, 415-423.
[11]
Gawande, M.B.; Zboril, R.; Malgras, V.; Yamauchi, Y. Integrated nanocatalysts: A unique class of heterogeneous catalysts. J. Mater. Chem. A , 2015, 3, 8241-8245.
[12]
Mobinikhaledi, A.; Moghanian, H.; Zohari, A. Piperazine catalyzed one-pot, three-component synthesis of 4H-chromene and 3,4-dihydropyrano [c]chromene derivatives under solvent-free conditions. Rev. Roum. Chim., 2016, 61, 35-39.
[13]
Heravi, M.M.; Zakeri, M.; Mohammadi, N. Morpholine catalyzed the one-pot multicomponent synthesis of compounds containing chromene core in water. Chin. J. Chem., 2011, 29, 1163-1166.
[14]
Irani, S.; Maghsoodlou, M.T.; Hazeri, N. Piperidine, an efficient base catalyst
for the one-pot synthesis of 3,4-dihydropyrano[c]chromenes derivatives. Ind. J. Chem., 2017, 56 (B), 549-655.
[15]
Hazeri, N.; Maghsoodlou, M.T.; Mir, F.; Kangani, M.; Saravani, H. Molashahi, An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. E. Chin. J. Catal., 2014, 35, 391-395.
[16]
Mansoor, S.S.; Logaiya, K.; Aswin, K.; Sudhan, P.N. An appropriate one-pot synthesis of 3,4-dihydropyrano[c]chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J. Taib. Uni. Sci., 2015, 9, 213-226.
[18]
Prasanna, T.S.R.; Raju, K.M. Silica gel promoted mild, efficient and inexpensive protocol for the preparation of 3, 4-dihydropyrano[c]chromenes. J. Korean Chem. Soc., 2011, 55, 662-665.
[19]
Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Dodeji, F.N. A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano [c]chromene derivatives using a Fe3O4@SiO2-imid–PMAn magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Advances, 2015, 5, 26625-26633.
[22]
Khan, A.T.; Shahzad, M.L.; Khan, A.M.M. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 2011, 52, 5327-5332.
[23]
Ameta, K.L.; Penoni, A. Heterogeneous catalysis: A Versatile Tool for the Synthesis of Bioactive Heterocycles; CRC Press: Florida, USA, 2014, pp. 1-345.
[24]
Tekale, S.U.; Pagore, V.P.; Kauthale, S.S.; Pawar, R.P. La2O3/TFE: An efficient system for room temperature synthesis of Hantzsch polyhydroquinolines. Chin. Chem. Lett., 2014, 25, 1149-1152.
[25]
Magar, R.L.; Thorat, P.B.; Jadhav, V.B.; Tekale, S.U.; Dake, S.A.; Patil, B.R.; Pawar, R.P. Silica gel supported polyamine: A versatile catalyst for one-pot synthesis of 2-amino-4H-chromene derivatives. J. Mol. Cat. A Chem., 2013, 374, 118-124.
[26]
Pasinszki, T.; Krebsz, M.; Lajgut, G.G.; Kocsis, T.; Kótai, L.; Kauthale, S.; Tekale, S.; Pawar, R. Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines. New J. Chem., 2018, 42, 1092-1098.
[27]
Kótai, L.; Pasinszki, T.; Czégény, Z.; Bálint, Sz.; Sajó, I.E.; May, Z.; Németh, P.; Károly, Z.; Sharma, P.K.; Sharma, V.; Banerji, K.K. Metal and metal-sulfide containing carbons from sulphonated styrene-divinylbenzene copolymer based ion-exchangers. Eur. Chem. Bull., 2012, 1(10), 398-400.
[29]
Keil, P.; Lützenkirchen-Hecht, D.; Frahm, R. Investigation of room temperature oxidation of Cu in Air by Yoneda-XAFS. AIP Conf. Proc., 2007, 882, 490-493.
[30]
Pasinszki, T.; Krebsz, M.; Kótai, L.; Sajó, I.E.; Homonnay, Z.; Kuzmann, E.; Kiss, L.F.; Váczi, T.; Kovács, I. Nanofurry magnetic carbon microspheres for separation processes and catalysis: synthesis, phase composition, and properties. J. Mater. Sci., 2015, 50, 7353-7363.