Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Synthesis of Polyaniline/Graphene Nanocomposites and Electrochemical Sensing Performance for Formaldehyde

Author(s): Lizhai Pei, Yue Ma, Fanglv Qiu, Feifei Lin, Chuangang Fan* and Xianzhang Ling*

Volume 16, Issue 4, 2020

Page: [493 - 498] Pages: 6

DOI: 10.2174/1573411014666181115125050

Price: $65

Abstract

Background: Formaldehyde has been recognized as the important liquid environmental pollutant which can cause health risk. Great effort has been devoted to detecting formaldehyde in liquid environment. It is of important significance to develop a sensitive method for measuring formaldehyde from the environmental and health viewpoints.

Methods: Polyaniline/graphene nanocomposites have been prepared by a simple in-situ polymerization process using graphene and aniline as the raw materials. The nanocomposites were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM). The polyaniline/graphene nanocomposites were applied to modify the glassy carbon electrode for the detection of formaldehyde by cyclic voltammetry (CV) method.

Results: The polyaniline/graphene nanocomposites consist of hexagonal graphite phase. The polyaniline particles are dispersed and attached to the surface of the graphene nanosheet-shaped morphology. The thickness of the graphene nanosheets is less than 50 nm. The electrocatalytic performance of the polyaniline/graphene nanocomposites modified glassy carbon electrode towards formaldehyde was obtained. The potential of the irreversible oxidation peak is located at +0.19 V. The polyaniline/graphene nanocomposites modified glassy carbon electrode shows a wide linear range of 0.0001-2 mM and low detection limit of 0.085 μM.

Conclusion: The nanocomposites modified glassy carbon electrode possesses good reproducibility and stability. The polyaniline/graphene nanocomposites show great application potential for the electrochemical sensors to detect formaldehyde in liquid environments.

Keywords: Electrochemistry, formaldehyde, glassy carbon electrode, graphene, nanocomposites, polyaniline.

« Previous
Graphical Abstract

[1]
Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuat. B, 1986, 135, 268-275.
[http://dx.doi.org/10.1016/j.snb.2008.08.025]
[2]
Xu, X.; Su, R.; Zhao, X.; Liu, Z.; Li, D.; Li, X.; Zhang, H.; Wang, Z. Determination of formaldehyde in beverages using microwave-assisted derivatization and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Talanta, 2011, 85(5), 2632-2638.
[http://dx.doi.org/10.1016/j.talanta.2011.08.037] [PMID: 21962694]
[3]
Yu, P.H.; Cauglin, C.; Wempe, K.L.; Gubisne-Haberle, D. A novel sensitive high-performance liquid chromatography/electrochemical procedure for measuring formaldehyde produced from oxidative deamination of methylamine and in biological samples. Anal. Biochem., 2003, 318(2), 285-290.
[http://dx.doi.org/10.1016/S0003-2697(03)00211-2] [PMID: 12814633]
[4]
Li, Z.; Ma, H.; Lu, H.; Tao, G. Determination of formaldehyde in foodstuffs by flow injection spectrophotometry using phloroglucinol as chromogenic agent. Talanta, 2008, 74(4), 788-792.
[http://dx.doi.org/10.1016/j.talanta.2007.07.011] [PMID: 18371710]
[5]
Yeh, T.S.; Lin, T.C.; Chen, C.C.; Wen, H.M. Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry. Yao Wu Shi Pin Fen Xi, 2013, 21, 190-197.
[http://dx.doi.org/10.1016/j.jfda.2013.05.010]
[6]
Herschkovitz, Y.; Eshkenazi, I.; Campbell, C.E.; Rishpon, J. An electrochemical biosensor for formaldahyde. J. Electroanal. Chem. (Lausanne Switz.), 2000, 491, 182-187.
[http://dx.doi.org/10.1016/S0022-0728(00)00170-4]
[7]
Ozoner, S.K.; Erhan, E.; Yilmaz, F.; Ergenekon, P.; Anild, I. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem. Technol. Biotechnol., 2013, 88, 727-732.
[http://dx.doi.org/10.1002/jctb.3896]
[8]
Zhang, Y.; Zhang, M.; Cai, Z.Q.; Chen, M.Q.; Cheng, F.L. A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim. Acta, 2012, 68, 172-177.
[http://dx.doi.org/10.1016/j.electacta.2012.02.050]
[9]
Yan, R.W.; Jin, B.K. Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution. Chin. Chem. Lett., 2013, 24, 159-162.
[http://dx.doi.org/10.1016/j.cclet.2013.01.023]
[10]
Zhou, Z.L.; Kang, T.F.; Zhang, Y.; Cheng, S.Y. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode. Mikrochim. Acta, 2009, 164, 133-138.
[http://dx.doi.org/10.1007/s00604-008-0046-x]
[11]
Wang, X.M.; Zhou, D.K.; Wang, Y.C. Electrochemical determination of catalpol in rehmannia glutinosa based on polyaniline-graphene modified glassy carbon electrode. Int. J. Electrochem. Sci., 2017, 12, 5411-5420.
[http://dx.doi.org/10.20964/2017.06.17]
[12]
Yu, W.W.; Chen, X.A.; Mei, W.; Chen, C.S.; Tsang, Y.H. Photocatalytic and electrochemical performance of three-dimensional reduced graphene oxide/WS2/Mg-doped ZnO composites. Appl. Surf. Sci., 2017, 400, 129-138.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.138]
[13]
Duan, J.F.; Zhu, C.; Du, Y.H.; Wu, Y.L.; Chen, Z.Y.; Li, L.J.; Zhu, H.L.; Zhu, Z.Y. Synthesis of N-doped carbon-coated Zn–Sn mixed oxide cubes/graphene composite with enhanced lithium storage properties. J. Mater. Sci., 2017, 52, 10470-10479.
[14]
Cao, S.Y.; Chen, C.S.; Xi, X.D.; Zeng, B.; Ning, X.T.; Liu, T.G.; Chen, X.H.; Meng, X.M.; Xiao, Y. Hypothermia-controlled Co-precipitation route to deposit well-dispersed β-Bi2O3 nanospheres on polymorphic graphene flakes. Vacuum, 2014, 102, 1-4.
[http://dx.doi.org/10.1016/j.vacuum.2013.10.025]
[15]
Chen, C.S.; Yu, W.W.; Liu, T.G.; Cao, S.Y.; Tsang, Y.H. Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial application. Sol. Energy Mater. Sol. Cells, 2017, 160, 43-53.
[http://dx.doi.org/10.1016/j.solmat.2016.10.020]
[16]
Tang, L.; Yang, Z.K.; Duan, F.; Chen, M.Q. Fabrication of graphene/polyaniline nanofibers composite for enhanced supercapacitor properties. Colloid. Surface. A, 2017, 520, 184-192.
[http://dx.doi.org/10.1016/j.colsurfa.2017.01.083]
[17]
Wang, H.Z.; Guo, Z.Y.; Yao, S.W.; Li, Z.X.; Zhang, W.G. Design and synthesis of ternary graphene/polyaniline/Co3O4 hierarchical nanocomposites for sueprcapacitors. Int. J. Electrochem. Sci., 2017, 12, 3721-3731.
[http://dx.doi.org/10.20964/2017.05.66]
[18]
Yu, J.H.; Xie, F.F.; Wu, Z.C.; Huang, T.; Wu, J.F.; Yan, D.D.; Huang, C.Q.; Li, L. Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim. Acta, 2018, 259, 968-974.
[http://dx.doi.org/10.1016/j.electacta.2017.11.008]
[19]
Zou, Y.B.; Zhang, Z.C.; Zhong, W.B.; Yang, W.T. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 9245-9256.
[http://dx.doi.org/10.1039/C8TA01366G]
[20]
Chen, Z.Y.; Xu, M.; Zhu, H.L.; Xie, T.; Wang, W.H.; Zhao, Q.F. Enhanced electrochemical performance of polyacene coated LiMn2O3.95F0.05 for lithium ion batteries. Appl. Surf. Sci., 2013, 286, 177-183.
[http://dx.doi.org/10.1016/j.apsusc.2013.09.044]
[21]
Saadati, F.; Ghahramani, F.; Shayani-jam, H.; Piri, F.; Yaftian, M.R. Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective elctrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 2018, 86, 213-221.
[http://dx.doi.org/10.1016/j.jtice.2018.02.019]
[22]
Kandasamy, S.K.; Sandasamy, K. Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: A review. J. Inorg. Organomet. Polym. Mater., 2018, 28, 559-584.
[http://dx.doi.org/10.1007/s10904-018-0779-x]
[23]
Kabomo, T.M.; Scurrell, M.S. The effect of protonation and oxidation state of polyaniline on the stability of gold nanoparticles. Eur. Polym. J., 2016, 82, 300-306.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.04.004]
[24]
Zhybak, M.; Beni, V.; Vagin, M.Y.; Dempsey, E.; Turner, A.P.F.; Korpan, Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron., 2016, 77, 505-511.
[http://dx.doi.org/10.1016/j.bios.2015.10.009] [PMID: 26457736]
[25]
Sivakumar, M.; Sakthivel, M.; Chen, S.M.; Pandi, K.; Chen, T.W.; Yu, M.C. An electrochemical selective detection of nitrite sensor for polyaniline doped graphene oxide modified electrode. Int. J. Electrochem. Sci., 2017, 12, 4835-4846.
[http://dx.doi.org/10.20964/2017.06.24]
[26]
Shih, Y.C.; Lin, H.L.; Lin, K.F. Electropolymerized polyaniline/ graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells. J. Electroanal. Chem. (Lausanne Switz.), 2017, 794, 112-119.
[http://dx.doi.org/10.1016/j.jelechem.2017.04.010]
[27]
Zhang, W.W.; Guo, H.L.; Sun, H.Q.; Zeng, R.C. Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection. Appl. Surf. Sci., 2017, 410, 547-556.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.133]
[28]
Deng, J.G.; Ding, X.B.; Zhang, W.C.; Peng, Y.X.; Wang, J.H.; Long, X.P.; Li, P.; Chan, A.S.C. Carbon nanotube-polyaniline hybrid materials. Eur. Polym. J., 2002, 38, 2497-2501.
[http://dx.doi.org/10.1016/S0014-3057(02)00165-9]
[29]
Jin, G.P.; Li, J.; Peng, X. Preparation of platinum nanoparticles on polyaniline-coat multi-walled carbon nanotubes for adsorptive stripping voltammetric determination of formaldehyde in aqueous solution. J. Appl. Electrochem., 2009, 39, 1889-1896.
[http://dx.doi.org/10.1007/s10800-009-9896-0]
[30]
Yi, Q.F.; Niu, F.J.; Yu, W.Q. Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 2011, 519, 3155-3161.
[http://dx.doi.org/10.1016/j.tsf.2010.12.241]
[31]
Ben Ali, M.; Gonchar, M.; Gayda, G.; Paryzhak, S.; Maaref, M.A.; Jaffrezic-Renault, N.; Korpan, Y. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron., 2007, 22(12), 2790-2795.
[http://dx.doi.org/10.1016/j.bios.2006.10.002] [PMID: 17098416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy