[1]
Torkildsen O, Myhr KM, Bo L. Disease-modifying treatments for multiple sclerosis - a review of approved medications. Eur J Neurol 2016; 23: 18-27.
[2]
Castro-Borrero W, Graves D, Frohman TC, et al. Current and emerging therapies in multiple sclerosis: A systematic review. Ther Adv Neurol Disorder 2012; 5(4): 205-20.
[3]
Clement M, Pearson JA, Gras S, et al. Targeted suppression of autoreactive CD8 (+) T-cell activation using blocking anti-CD8 antibodies. Sci Rep 2016; 6: 35332.
[4]
Friese MA, Fugger L. Attractive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005; 128: 1747-63.
[5]
Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747.
[6]
Hickey WF. The pathology of multiple sclerosis: A historical perspective. J Neuroimmunol 1999; 98(1): 37-44.
[8]
Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 2014; 88(9): 4698-710.
[9]
Sato W. Chemokine receptors on T cells in multiple sclerosis. Clin Exp Neuroimmunol 2014; 5(2): 162-74.
[10]
Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 2011; 1812(2): 220-30.
[11]
Engelhardt B. Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 2008; 274(1-2): 23-6.
[12]
Man S, Ubogu EE, Ransohoff RM. Inflammatory cell migration into the central nervous system: A few new twists on an old tale. Brain Pathol 2007; 17(2): 243-50.
[13]
Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 2006; 27(1): 48-55.
[14]
Mahad DJ, Lawry J, Howell SJ, Woodroofe MN. Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Mult Scler 2003; 9(2): 189-98.
[15]
Fife BT, Kennedy KJ, Paniagua MC, et al. CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2001; 166(12): 7617-24.
[16]
Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2000; 26(2): 133-42.
[17]
Heliopoulos I, Patousi A. Therapeutic monoclonal antibodies and multiple sclerosis: the essentials. Med Chem 2018; 14(2): 144-54.
[18]
Khamehchian S, Zolfagharian H, Dounighi NM, Tebianian M, Madani R. Study on camel IgG purification: A new approach to prepare Naja Naja Oxiana antivenom as passive immunization for therapy. Hum Vaccin Immunother 2014; 10(6): 1633-8.
[19]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[20]
Rissiek B, Koch-Nolte F, Magnus T. Nanobodies as modulators of inflammation: Potential applications for acute brain injury. Front Cell Neurosci 2014; 8: 344.
[21]
Sadeghian-Rizi T, Behdani M, Khanahmad H, et al. Production of novel camelid anti-CXCL10 specific polyclonal antibodies and evaluation of their bioreactivity. Int J Pept Res Ther 2018; 1-6.
[22]
Behdani M, Zeinali S, Khanahmad H, et al. Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Mol Immunol 2012; 50: 35-41.
[23]
Arezumand R, Mahdian R, Zeinali S, et al. Identification and characterization of a novel nanobody against human placental growth factor to modulate angiogenesis. Mol Immunol 2016; 78: 183-92.
[24]
Darvish M, Behdani M, Shokrgozar MA, Pooshang-Bagheri K, Shahbazzadeh D. Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody. Mol Immunol 2015; 68: 412-20.
[25]
Lefranc MP, Pommie C, Kaas Q, et al. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig super family C like domains. Dev Comp Immunol 2005; 29(3): 185-203.
[26]
Kazemi-Lomedasht F, Behdani M, Bagheri KP, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015; 65: 58-67.
[27]
Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 1978; 100: 173-9.
[28]
Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Parhamifar L, Moghimi SM. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumor cells. J Control Release 2011; 156: 85-91.
[29]
Blanchetot C, Verzijl D, Mujić-Delić A, et al. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function. J Biol Chem 2013; 288: 25173-82.
[30]
Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol 2010; 184(10): 5696-704.
[31]
Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest 2012; 122(4): 1180-8.
[32]
Choi J, Selmi C, Leung P, Kenny TP, Roskams T, Gershwin ME. Chemokine and chemokine receptors in autoimmunity: The case of primary biliary cholangitis. Expert Rev Clin Immunol 2016; 12: 661-72.
[33]
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659-702.
[34]
Manel J, Edurne P, Roger C. Chemokines and chemokine receptors. eLS 2013. doi: 10.1002/9780470015902.a0000933.pub3
[35]
Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 2014; 13: 272-80.
[36]
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev 2009; 8: 379-83.
[37]
Liu M, Guo S, Stiles J. The emerging role of CXCL10 in cancer. Oncol Lett 2011; 2(4): 583-9.
[38]
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26: 311-27.
[39]
Breser ML, Motrich RD, Sanchez LR, Mackern-Oberti JP, Rivero VE. Exprescersion of CXCR3 on specific T cells is essential for homing to the prostate gland in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. J Immunol 2013; 190: 3121-33.
[40]
Mohan K, Issekutz TB. Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 2007; 179: 8463-9.
[41]
Singh UP, Singh S, Taub DD, Lillard JW. Inhibition of IFN-γ-inducible protein-10 abrogates colitis in IL-10−/− mice. J Immunol 2003; 171: 1401-6.
[42]
Tsutahara K, Okumi M, Kakuta Y, Abe T, Yazawa K, Miyagawa S. The blocking of CXCR3 and CCR5 suppresses the infiltration of T lymphocytes in rat renal ischemia reperfusion. Nephrol Dial Transplant 2012; 27: 3799-806.
[43]
De Genst E, Silence K, Decanniere K, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 2006; 103: 4586-91.
[44]
Harmsen MM, De Haar HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77: 13-22.
[45]
Kazemi-Lomedasht F. muyldermans S, Habibi-Anbouhi M, Behdani M. Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Iran J Basic Med Sci 2018; 21: 260-6.
[46]
Stijlemans B, Conrath K, Cortez-Retamozo V, et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: african trypanosomes as paradigm. J Biol Chem 2004; 279: 1256-61.
[47]
de Wit RH, Heukers R, Brink HJ, et al. CXCR4-specific nanobodies as potential therapeutics for WHIM syndrome. J Pharmacol Exp Ther 2017; 363: 35-44.
[48]
Jähnichen S, Blanchetot C, Maussang D, et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci 2010; 107: 20565-70.