[1]
Moridi, Z.; Mottaghitalab, V.; Haghi, A.K. A detailed review of recent progress in carbon nanotube/chitosan nanocomposites. Cellul. Chem. Technol., 2011, 45(9-10), 549-563.
[2]
Sun, F.; Cha, H.R.; Bae, K.; Hong, S.; Kim, J.M.; Kim, S.H.; Lee, J.; Lee, D. Mechanical properties of multilayered chitosan/CNT nanocomposite films. Mater. Sci. Eng. A, 2011, 528(21), 6636-6641.
[3]
Martinez-Hernandez, A.; Velasco-Santos, C.; Castano, V.M. Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci., 2010, 6(1), 12-39.
[4]
Ando, Y.; Zhao, X.; Shimoyama, H.; Sakai, G.; Kaneto, K. Physical properties of multiwalled carbon nanotubes. Int. J. Inorg. Mater., 1999, 1(1), 77-82.
[5]
Miao, M. Electrical conductivity of pure carbon nanotube yarns. Carbon, 2011, 49(12), 3755-3761.
[6]
Cai, W.Z.; Tu, S.T.; Gong, J.M. A physically based percolation model of the effective electrical conductivity of particle filled composites. J. Compos. Mater., 2006, 40(23), 2131-2142.
[7]
Taherian, R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol., 2014, 3(6), 26-38.
[8]
Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr. Polym., 2013, 92, 1783-1791.
[9]
Piri, N.; Mottaghitalab, V.; Arbab, S. Development and characterization of MWNTs/chitosan biocomposite fiber. Fibers Polym., 2013, 14(2), 236-242.
[10]
Hernandez-Vargas, J.; Gonzalez-Campos, B.J.; Lara-Romero, J.; Prokhorov, E.; Luna-Barcenas, G.; Aviña-Verduzco, J.A.; Gonzalez-Hernandez, J.C. Chitosan/MWCNTs-decorated with silver nanoparticle composites: Dielectric and antibacterial characterization. J. Appl. Polym. Sci., 2014, 131(9), 40214.
[11]
Yan, J.; Wang, H.; Wu, T.; Li, X.; Ding, Z. Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos. Part A, 2014, 67, 1-7.
[12]
Xiao, W.; Wu, T.; Peng, J.; Bai, Y.; Li, J.; Lai, G.; Wu, Y.; Dai, L. Preparation, structure, and properties of chitosan/cellulose/multi-walled carbon nanotube composite membranes and fibers. J. Appl. Polym. Sci., 2013, 128(2), 1193-1199.
[13]
Lee, H.U.; Park, C.; Park, J.Y. Highly conductive and flexible chitosan based multi-wall carbon nanotube/polyurethane composite fibers. RSC Advances, 2016, 6, 2149-2154.
[14]
Padmanabhan, V. Percolation of high-density polymer regions in nanocomposites: The underlying property for mechanical reinforcement. J. Chem. Phys., 2013, 139Article 144904
[15]
Baxter, S.C.; Burrows, B.J.; Fralick, B.S. Mechanical percolation in nanocomposites: Microstructure and micromechanics. Probab. Eng. Mech., 2016, 44, 35-42.
[16]
Fralick, B.S.; Gatzke, E.P.; Baxter, S.C. Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures. Probab. Eng. Mech., 2012, 30, 1-8.
[17]
Wang, S.F.; Shen, L.; Zhang, W.D.; Tong, Y.J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 2005, 6(6), 3067-3072.
[18]
Yadav, S.K.; Mahapatra, S.S.; Yadav, M.K.; Dutta, P.K. Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2 + 1] cycloaddition of nitrenes. RSC Advances, 2013, 3, 23631-23637.
[19]
Zaman, A.; Rashid, T.U.; Khan, M.A.; Rahman, M.M. Preparation and characterization of multiwall carbon nanotube (MWCNT) reinforced chitosan nanocomposites: effect of gamma radiation. BioNanoSci., 2015, 5, 31-38.
[20]
Nikfar, N.; Zare, Y.; Rhee, K.Y. Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Physica B, 2018, 533, 69-75.
[21]
Yan, K.Y.; Xue, Q.Z.; Zheng, Q.B.; Hao, L.Z. The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology, 2007, 18255705
[22]
Zare, Y.; Rhee, K.Y. A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos. Sci. Technol., 2018, 155, 252-260.
[23]
Feng, C.; Jiang, L. Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A, 2013, 47, 143-149.
[24]
Wang, Y.; Weng, G.J.; Meguid, S.A.; Hamouda, A.M. A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys., 2014, 115193706
[25]
Rocha, R.P.; Soares, O.S.; Figueiredo, J.L.; Pereira, M.F.R. Tuning CNT properties for metal-free environmental catalytic applications. C, 2016, 2(3), 17.
[26]
Zarate-Trivino, D.G.; Prokhorov, E.; Luna-Barcenas, G.; Mendez-Nonell, J. B.González-Campos, J.; Elizalde-Peña, E.; Mota-Morales, J.D.; Santiago-Jacinto, P.; Terrones, M.; Gómez-Salazar, S.; Nuño-Donlucas, S.M.; Sanchez, I.C. The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. Mater. Chem. Phys., 2015, 155, 252-261.
[27]
Stobinski, L.; Lesiak, B.; Kover, L.; Toth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd., 2010, 501(1-2), 77-84.
[28]
Atieh, M.A.; Bakather, O.Y.; Al-Tawbini, B.; Bukhari, A.A.; Abuilaiwi, F.A.; Fettouhi, M.B. Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl., 2010, 2010 Article ID 603978
[29]
Sahebian, S.; Zebarjad, S.M.; Khaki, J.V.; Lazzeri, A. A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. J. Nanostruct. Chem., 2015, 5(3), 287-293.
[30]
Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc., 2007, 38(6), 728-736.
[31]
Cao, X.; Dong, H.; Li, C.M.; Lucia, L.A. The enhanced mechanical properties of a covalently bound chitosan-multiwalled carbon nanotube nanocomposite. J. Appl. Polym. Sci., 2009, 113(1), 466-472.
[32]
Despond, S.; Espuche, E.; Cartier, N.; Domard, A. Hydration mechanism of polysaccharides: A comparative study. J. Polym. Sci. Part B, 2005, 43, 48-58.
[33]
Kumar-Krishnan, S.; Prokhorov, E.; Ramırez, M.; Hernandez-Landaverde, M.A.; Zarate-Triviño, D.G.; Kovalenko, Y.; Sanchez, I.C.; Mendez-Nonell, J.; Luna-Barcenas, G. Novel gigahertz frequency dielectric relaxations in chitosan films. Soft Matter, 2014, 10, 8673-8684.
[34]
Ogawa, K.; Yui, T.; Miya, M. Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes. Biotechnol. Biochem., 1992, 56, 858-862.
[35]
Gonzalez-Campos, J.B.; Prokhorov, E.; Luna-Barcenas, G.; Sanchez, I.C. The effect of water on the α-relaxation and the glass transition temperature. J. Polym. Sci. B, 2009, 47(22), 2259-2271.
[36]
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys., 1973, 45(4), 574-588.
[37]
Heilmann, A. Polymer films with embedded metal nanoparticles. J. Am. Chem. Soc., 2003, 125(20), 6338-6339.
[38]
Kovacs, Z.J.; Velagala, S.B.; Schulte, K.; Bauhofer, W. Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol., 2007, 67(5), 922-928.
[39]
Guadagno, L.; De Vivo, B.; Di Bartolomeo, A.; Lamberti, P.; Sorrentino, A.; Tucci, V.; Vertuccio, L.; Vittoria, V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 2011, 49(6), 1919-1930.
[40]
Tang, C.; Xiang, L.; Su, J.; Wang, K.; Yang, C.; Zhang, Q.; Fu, Q. Improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J. Phys. Chem. B, 2008, 112(13), 3876-3881.
[41]
Zare, Y.; Rhee, K.Y. Accounting the reinforcing efficiency and percolating role of interphase regions in tensile modulus of polymer/CNT nanocomposites. Eur. Polym. J., 2017, 87, 389-397.
[42]
Aryaei, A.; Jayatissa, A.H.; Jayasuriya, A.C. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J. Biomed. Mater. Res. A, 2014, 102(8), 2704-2712.
[43]
Pok, S.; Vitale, F.; Eichmann, S.L.; Benavides, O.M.; Pasquali, M.; Jacot, J.G. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano, 2014, 8(10), 9822-9832.