Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Effect of Chemical Oxidation Routes on the Properties of Chitosan- MWCNT Nanocomposites

Author(s): Alejandro Gomez Sánchez, Evgen Prokhorov*, Gabriel Luna-Barcenas, Yuriy Kovalenko, Eric M. Rivera-Muñoz, Maria G. Raucci and Giovanna Buonocore

Volume 15, Issue 6, 2019

Page: [618 - 625] Pages: 8

DOI: 10.2174/1573413714666181114105422

Price: $65

Abstract

Background: Chitosan-multiwall carbon nanotubes (CS-MWCNTs) nanocomposites are an attractive material due to their biocompatibility and possibility to produce nanocomposites with high conductivities and high mechanical properties. Both electrical and mechanical properties depend upon the method of MWCNT chemical oxidation; this oxidation affects the interaction of CS side groups with MWCNT’s surface groups. However, in the literature, there are no reports on how different methods of MWCNT oxidation will affect the electrical and mechanical properties of related nanocomposites.

Objective: The objective of this work is to probe CS-MWCNT nanocomposite’s electrical and mechanical properties by taking advantage of the presence of interfacial layer and its dependence on the methods of MWCNTs chemical oxidation routes.

Methods: Nanocomposites are prepared with non-functionalized MWCNT and functionalized MWCNTs obtained by chemical oxidation treatments in HNO3 in H2SO4/NHO3 mixtures and commercially carboxyl-terminated MWCNTs, respectively. Properties of MWCNTs and nanocomposites were evaluated using SEM, FTIR, Raman, TGA, XRD, impedance and mechanical measurements.

Results: It was shown that different chemical oxidation routes produce MWCNTs with a different number of carboxylic groups and defects which influence the interaction between MWCNTs with CS matrix and thickness of the interfacial layer between MWCNTs and CS matrix. Additionally, it was shown that the formation of the interfacial layer dominates on the dispersion of MWCNTs and affects on the electrical and mechanical percolation effects.

Conclusion: It was shown that contrary to many studies previously reported, good dispersion of MWCNT does not guarantee obtained nanocomposites with the best electrical and mechanical properties.

Keywords: Chitosan, carbon nanotubes, electrical and mechanical properties, percolation, interfacial layer, MWCNT.

Graphical Abstract

[1]
Moridi, Z.; Mottaghitalab, V.; Haghi, A.K. A detailed review of recent progress in carbon nanotube/chitosan nanocomposites. Cellul. Chem. Technol., 2011, 45(9-10), 549-563.
[2]
Sun, F.; Cha, H.R.; Bae, K.; Hong, S.; Kim, J.M.; Kim, S.H.; Lee, J.; Lee, D. Mechanical properties of multilayered chitosan/CNT nanocomposite films. Mater. Sci. Eng. A, 2011, 528(21), 6636-6641.
[3]
Martinez-Hernandez, A.; Velasco-Santos, C.; Castano, V.M. Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci., 2010, 6(1), 12-39.
[4]
Ando, Y.; Zhao, X.; Shimoyama, H.; Sakai, G.; Kaneto, K. Physical properties of multiwalled carbon nanotubes. Int. J. Inorg. Mater., 1999, 1(1), 77-82.
[5]
Miao, M. Electrical conductivity of pure carbon nanotube yarns. Carbon, 2011, 49(12), 3755-3761.
[6]
Cai, W.Z.; Tu, S.T.; Gong, J.M. A physically based percolation model of the effective electrical conductivity of particle filled composites. J. Compos. Mater., 2006, 40(23), 2131-2142.
[7]
Taherian, R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol., 2014, 3(6), 26-38.
[8]
Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr. Polym., 2013, 92, 1783-1791.
[9]
Piri, N.; Mottaghitalab, V.; Arbab, S. Development and characterization of MWNTs/chitosan biocomposite fiber. Fibers Polym., 2013, 14(2), 236-242.
[10]
Hernandez-Vargas, J.; Gonzalez-Campos, B.J.; Lara-Romero, J.; Prokhorov, E.; Luna-Barcenas, G.; Aviña-Verduzco, J.A.; Gonzalez-Hernandez, J.C. Chitosan/MWCNTs-decorated with silver nanoparticle composites: Dielectric and antibacterial characterization. J. Appl. Polym. Sci., 2014, 131(9), 40214.
[11]
Yan, J.; Wang, H.; Wu, T.; Li, X.; Ding, Z. Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos. Part A, 2014, 67, 1-7.
[12]
Xiao, W.; Wu, T.; Peng, J.; Bai, Y.; Li, J.; Lai, G.; Wu, Y.; Dai, L. Preparation, structure, and properties of chitosan/cellulose/multi-walled carbon nanotube composite membranes and fibers. J. Appl. Polym. Sci., 2013, 128(2), 1193-1199.
[13]
Lee, H.U.; Park, C.; Park, J.Y. Highly conductive and flexible chitosan based multi-wall carbon nanotube/polyurethane composite fibers. RSC Advances, 2016, 6, 2149-2154.
[14]
Padmanabhan, V. Percolation of high-density polymer regions in nanocomposites: The underlying property for mechanical reinforcement. J. Chem. Phys., 2013, 139Article 144904
[15]
Baxter, S.C.; Burrows, B.J.; Fralick, B.S. Mechanical percolation in nanocomposites: Microstructure and micromechanics. Probab. Eng. Mech., 2016, 44, 35-42.
[16]
Fralick, B.S.; Gatzke, E.P.; Baxter, S.C. Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures. Probab. Eng. Mech., 2012, 30, 1-8.
[17]
Wang, S.F.; Shen, L.; Zhang, W.D.; Tong, Y.J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 2005, 6(6), 3067-3072.
[18]
Yadav, S.K.; Mahapatra, S.S.; Yadav, M.K.; Dutta, P.K. Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2 + 1] cycloaddition of nitrenes. RSC Advances, 2013, 3, 23631-23637.
[19]
Zaman, A.; Rashid, T.U.; Khan, M.A.; Rahman, M.M. Preparation and characterization of multiwall carbon nanotube (MWCNT) reinforced chitosan nanocomposites: effect of gamma radiation. BioNanoSci., 2015, 5, 31-38.
[20]
Nikfar, N.; Zare, Y.; Rhee, K.Y. Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Physica B, 2018, 533, 69-75.
[21]
Yan, K.Y.; Xue, Q.Z.; Zheng, Q.B.; Hao, L.Z. The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology, 2007, 18255705
[22]
Zare, Y.; Rhee, K.Y. A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos. Sci. Technol., 2018, 155, 252-260.
[23]
Feng, C.; Jiang, L. Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A, 2013, 47, 143-149.
[24]
Wang, Y.; Weng, G.J.; Meguid, S.A.; Hamouda, A.M. A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys., 2014, 115193706
[25]
Rocha, R.P.; Soares, O.S.; Figueiredo, J.L.; Pereira, M.F.R. Tuning CNT properties for metal-free environmental catalytic applications. C, 2016, 2(3), 17.
[26]
Zarate-Trivino, D.G.; Prokhorov, E.; Luna-Barcenas, G.; Mendez-Nonell, J. B.González-Campos, J.; Elizalde-Peña, E.; Mota-Morales, J.D.; Santiago-Jacinto, P.; Terrones, M.; Gómez-Salazar, S.; Nuño-Donlucas, S.M.; Sanchez, I.C. The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. Mater. Chem. Phys., 2015, 155, 252-261.
[27]
Stobinski, L.; Lesiak, B.; Kover, L.; Toth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd., 2010, 501(1-2), 77-84.
[28]
Atieh, M.A.; Bakather, O.Y.; Al-Tawbini, B.; Bukhari, A.A.; Abuilaiwi, F.A.; Fettouhi, M.B. Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl., 2010, 2010 Article ID 603978
[29]
Sahebian, S.; Zebarjad, S.M.; Khaki, J.V.; Lazzeri, A. A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. J. Nanostruct. Chem., 2015, 5(3), 287-293.
[30]
Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc., 2007, 38(6), 728-736.
[31]
Cao, X.; Dong, H.; Li, C.M.; Lucia, L.A. The enhanced mechanical properties of a covalently bound chitosan-multiwalled carbon nanotube nanocomposite. J. Appl. Polym. Sci., 2009, 113(1), 466-472.
[32]
Despond, S.; Espuche, E.; Cartier, N.; Domard, A. Hydration mechanism of polysaccharides: A comparative study. J. Polym. Sci. Part B, 2005, 43, 48-58.
[33]
Kumar-Krishnan, S.; Prokhorov, E.; Ramırez, M.; Hernandez-Landaverde, M.A.; Zarate-Triviño, D.G.; Kovalenko, Y.; Sanchez, I.C.; Mendez-Nonell, J.; Luna-Barcenas, G. Novel gigahertz frequency dielectric relaxations in chitosan films. Soft Matter, 2014, 10, 8673-8684.
[34]
Ogawa, K.; Yui, T.; Miya, M. Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes. Biotechnol. Biochem., 1992, 56, 858-862.
[35]
Gonzalez-Campos, J.B.; Prokhorov, E.; Luna-Barcenas, G.; Sanchez, I.C. The effect of water on the α-relaxation and the glass transition temperature. J. Polym. Sci. B, 2009, 47(22), 2259-2271.
[36]
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys., 1973, 45(4), 574-588.
[37]
Heilmann, A. Polymer films with embedded metal nanoparticles. J. Am. Chem. Soc., 2003, 125(20), 6338-6339.
[38]
Kovacs, Z.J.; Velagala, S.B.; Schulte, K.; Bauhofer, W. Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol., 2007, 67(5), 922-928.
[39]
Guadagno, L.; De Vivo, B.; Di Bartolomeo, A.; Lamberti, P.; Sorrentino, A.; Tucci, V.; Vertuccio, L.; Vittoria, V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 2011, 49(6), 1919-1930.
[40]
Tang, C.; Xiang, L.; Su, J.; Wang, K.; Yang, C.; Zhang, Q.; Fu, Q. Improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J. Phys. Chem. B, 2008, 112(13), 3876-3881.
[41]
Zare, Y.; Rhee, K.Y. Accounting the reinforcing efficiency and percolating role of interphase regions in tensile modulus of polymer/CNT nanocomposites. Eur. Polym. J., 2017, 87, 389-397.
[42]
Aryaei, A.; Jayatissa, A.H.; Jayasuriya, A.C. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J. Biomed. Mater. Res. A, 2014, 102(8), 2704-2712.
[43]
Pok, S.; Vitale, F.; Eichmann, S.L.; Benavides, O.M.; Pasquali, M.; Jacot, J.G. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano, 2014, 8(10), 9822-9832.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy