[1]
Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow, 2000, 21(1), 58-64.
[2]
Ijaz, N.; Zeeshan, A.; Bhatti, M.M.; Ellahi, R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J. Mol. Liquid,, 2018, 250, 80-87.
[3]
Ellahi, R.; Zeeshan, A.; Shehzad, N.; Alamri, S.Z. Structural impact of kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: Application of cooling process. J. Mol. Liquid,, 2018, 264(15), 607-615.
[4]
Hassan, M.; Marin, M.; Ellahi, R.; Alamri, S.Z. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. J. Heat Transfer, 2018, 49(18), 1837-1848.
[5]
Hassan, M.; Marin, M.; Alsharif, A.; Ellahi, R. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys. Lett. A, 2018, 382(38), 2749-2753.
[6]
Wang, X.Q.; Mujumdar, A.S. A review on nanofluids-part II: Experiments and applications. Braz. J. Chem. Eng., 2008, 25(4), 631-648.
[7]
Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R. A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass, 2015, 68, 85-90.
[8]
Hussein, A.M.; Bakar, R.A.; Kadirgama, K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud. Thermal Eng, 2014, 2, 50-61.
[9]
Bahiraei, M.; Heshmatian, S. Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Appl. Therm. Eng., 2017, 127, 1233-1245.
[10]
Bahiraei, M.; Heshmatian, S. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers. Manage., 2018, 168, 357-370.
[11]
Bahiraei, M.; Mazaheri, N. Second law analysis for flow of a nanofluid containing graphene–platinum nanoparticles in a minichannel enhanced with chaotic twisted perturbations. Chem. Eng. Res. Des., 2018, 136, 230-241.
[12]
Bahiraei, M.; Heshmatian, S.; Keshavarzi, M. Multi-attribute optimization of a novel micro liquid block working with green graphene nanofluid regarding preferences of decision maker. Appl. Therm. Eng., 2018, 143, 11-21.
[13]
Gupta, H.K.; Agrawal, G.D.; Mathur, J. An overview of nanofluids: A new media towards green environment. Int. J. Environ. Sci., 2012, 3(1), 433-440.
[14]
Yang, Y.; Zhang, Z.G.; Grulke, E.A.; Anderson, W.B.; Wu, G. Heat transfer properties ofnanoparticle-in-fluid dispersions (nanofluids) in laminar flow.Int. J. Heat Mass Transfer 2005, 48(6), 1107-1116.
[15]
Yahya, S.M.; Anwer, S.F.; Sanghi, S. Variable expansivity: A key changing parameter in modeling of thermal conductivity of nanofluid. Nanosci. Nanotechnol. Lett., 2014, 6(10), 942-946.
[16]
Ansari, S.; Hussain, T.; Yahya, S.M.; Chaturvedi, P.; Sardar, N. Experimental investigation viscosity of nanofluids containing oxide nanoparticles at varying shear rate. J. Nanofluids, 2018, 7(6), 1075-1080.
[17]
Ansari, S.; Yahya, S.M.; Umair, M.; Naim, M.S.; Bhardwaj, P.; Chaturvedi, P.; Faisal, K.; Hussain, T. Experimental investigation of viscosity for Al2O3, CuO and TiO2 nanoparticles in deionised water at a fixed shear rate. Adv. Sci. Eng. Med., 2018, 10(3), 293-297.
[18]
Chaturvedi, P.; Yahya, S.M.; Hussain, T. Pool boiling heat transfer and CHF enhancement of aqueous Al2O3 and CuO nanofluid. IOP Conf. Ser. Mater. Sci. Eng, 2018, 37(1), pp. 012-154.
[19]
Yahya, S.M.; Hussain, T.; Chaturvedi, P. Pool boiling heat transfer and critical heat flux enhancement of TiO2/water nanofluid. Adv. Sci. Eng. Med., 2018, 10(3), 298-303.
[20]
Lv, J.; Zhou, L.; Bai, M.; Liu, J.W.; Xu, Z. Numerical simulation of the improvement to the heat transfer within the internal combustion engine by the application of nanofluids. J. Enhanc. Heat Transf., 2010, 17(1), 93-109.
[21]
Vajjha, R.S.; Das, D.K.; Namburu, P.K. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int. J. Heat Fluid Flow, 2010, 31(4), 613-621.
[22]
Akhtari, M.; Haghshenasfard, M.; Talaie, M.R. Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. Numer. Heat Tr. A Appl., 2013, 63(12), 941-958.
[23]
Huminic, G.; Huminic, A. The cooling performances evaluation of nanofluids in a compact heat exchanger. SAE Techn. Paper, 2012, 2012-01, 1045.
[24]
Vajjha, R.S.; Das, D.K.; Ray, D.R. Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. Int. J. Heat Mass Transfer,, 2015, 80, 353-367.
[25]
Huminic, G.; Huminic, A. Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube. Int. Commun. Heat Mass Transfer, 2013, 44, 52-57.
[26]
Akbaridoust, F.; Rakhsha, M.; Abbassi, A.; Saffar-Avval, M. Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Transfer, 2013, 58(1-2), 480-491.
[27]
Kumar, P.M.; Palanisamy, K.; Kumar, J.; Tamilarasan, R.; Sendhilnathan, S. CFD analysis of heat transfer and pressure drop in helically coiled heat exchangers using Al2O3/water nanofluid. J. Mech. Sci. Technol., 2015, 29(2), 697-705.
[28]
He, Y.; Men, Y.; Zhao, Y.; Lu, H.; Ding, Y. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl. Therm. Eng., 2009, 29(10), 1965-1972.
[29]
Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M. CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger. Neural Comput. Appl., 2014, 25(7-8), 2079-2090.
[30]
Delavari, V.; Hashemabadi, S.H. CFD simulation of heat transfer enhancement of Al2O3/water and Al2O3/ethylene glycol nanofluids in a car radiator. Appl. Therm. Eng., 2014, 73(1), 380-390.
[31]
Abbasi, M.; Baniamerian, Z. Analytical simulation of flow and heat transfer of two-phase nanofluid (stratified flow regime). Int. J. Chem. Eng., 2014, 2014474865
[32]
Tema, R. Navier–Stokes Equations: Theory and Numerical Analysis; ACM Chelsea Publishing: UK, 1984.
[33]
Maxwell, J.C. Treatise on Electricity and Magnetism; Oxford University Press: London, 1904.
[34]
Brinkman, H.C. The viscosity of concentrated suspensions and solutions. . J. Chem. Phys., 1952, 20(4), 571-571.
[35]
Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 1998, 11(2), 151-170.
[36]
Incorpera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of heat and mass transfer, 6th ed; Wiley & Sons: New York, 2007, pp. 929-953.
[37]
Hilpert, R. Heat emission from heated wires and pipes in the air flow. Eng. Res. A, 1933, 4(5), 215-224.
[38]
Brown, G. The Darcy–Weisbach Equation; Oklahoma State University: Stillwater, 2000.
[39]
Shah, R.K.; London, A.L. .Laminar flow forced convection heat transfer and flow friction in straight and curved ducts-A summary of analytical solutions. Stanford Univ. CA Dept. Mech. Eng. 1971,TR-75.
[40]
Sieder, E.N.; Tate, G.E. Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem., 1936, 28(12), 1429-1435.
[41]
Fluent Incorporated Fluent 6.2 User Manual..