[1]
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[2]
Rivera-Guevara C, Camacho J. Tamoxifen and its new derivatives in cancer research. Recent Pat Anticancer Drug Discov 2011; 6(2): 237-45.
[3]
Tajiri K, Aonuma K, Sekine I. Cardiovascular toxic effects of targered cancer therapy. Jpn J Clin Oncol 2017; 47(9): 779-85.
[4]
Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targered therapies. Lancet 2016; 17(2): e529-41.
[5]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[6]
Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8(35): 59950-64.
[7]
Sharbaf FG, Farhangi H, Assadi F. Prevention of chemotherapy-induced nephrotoxicity in children with cancer. Int J Prev Med 2017; 8: 76-82.
[8]
Matsos A, Loomes M, Zhou I, Macmillan E, Sabel I, Rotziokos E, et al. Chemotherapy-induced cognitive impairments: White matter pathologies. Cancer Treat Rev 2017; 61: 6-14.
[9]
Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A Delphi consensus. Lancet Oncol 2016; 17(6): e231-9.
[10]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharmacol 2017; 528(1-2): 675-91.
[11]
Joanitti GA, Ganassin R, Rodrigues MC, Figueiro Longo JP, Jiang CS, Gu J, et al. Nanostructured systems for the organelle-specific delivery of anticancer drugs. Mini Rev Med Chem 2017; 17(3): 224-36.
[12]
Grinberg S, Linder C, Heldman E. Progress in lipid-based nanoparticles for cancer therapy. Crit Rev Oncog 2014; 19(3-4): 247-60.
[13]
Caraglia M, De Rosa G, Salzano G, Santini D, Lamberti M, Sperlongano P, et al. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr Cancer Drug Targets 2012; 12(3): 186-96.
[14]
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing? Bioconjug Chem 2016; 27(10): 2225-38.
[15]
Patel S, Bhirde AA, Rusling JF, Chen X, Gutkind JS, Patel V. Nano delivers big: Designing molecular missiles for cancer therapeutics. Pharmaceutics 2011; 3(1): 34-52.
[16]
Sun W, Lu Y, Gu Z. Advances in anticancer protein delivery using micro-/nanoparticles. Part Part Syst Charact 2014; 31(12): 1204-22.
[17]
Chen J. Use of photoluminescent nanoparticles for photodynamic therapy. US2002127224 (2012)
[18]
Saltzman WM, Fahmy T, Fong P. Targeted and high density drug loaded polymeric materials. US7534449 (2009)
[19]
Liu J, Jiang Z, Zhang S, Saltzman WM. Poly(omega-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials 2009; 30(29): 5707-19.
[20]
Liu J, Jiang Z, Zhang S, Liu C. gross RA, Kyriakides TR, Saltzman WM. Biodegratation, biocompatibility, and drug delivery in poly(w.pentadecalactone-co-p-dioxanone) copolyesters. Biomaterials 2011; 32(27): 6646-54.
[21]
Sheder A, Shefer SD. pH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients. US7670627 (2010)
[22]
Sengupta S, Zhao G, Capila I, Eavarone D, Sasisekharan R. Nanocell drug delivery system. US2007053845 (2007)
[23]
Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumoour cells and neovasculature with a nanoscale delivery system. Nature 2005; 436(7050): 568-72.
[24]
Tomalia DA, Swanson DR, Huang B, et al. Dendritic polymers with enhanced amplification and interior functionality. US7985424 (2011)
[25]
Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35(Pt1): 61-7.
[26]
Majoros IJ, Williams CR. Tomalia, Baker JR. New dendrimers; synthesis and characterization of POPAM-PAMAM hybrid dendrimers. Macromol 2008; 41(22): 8372-9.
[27]
Janaszewska A, Studzian M, Petersen JF, Ficker M, Paolucci V, Christensen JB, et al. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups.its uptake, effleux, and localization in a cell. Colloids Surf B Biointerfaces 2017; 159: 211-6.
[28]
Farokhzad OC, Jon SY, Langer RS. Targeted delivery of controlled release polymer systems. US7727969 (2010)
[29]
Farokhzad OC, Jon SY, Langer RS. Targeted delivery of controlled release polymer systems. US7550441 (2009)
[30]
Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan Dam Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res 2004; 64(21): 7668-72.
[31]
Farokhzad OC, Cheng J, Teply BA, Sheriff I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20.
[32]
Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 2012; 6(1): 696-704.
[33]
Gao J, Ai H. Drug delivery system based on polymer nanoshells. US2005058603 (2005)
[34]
Li J, Li X, Ni X, Leong KW. Biodegradable triblock copolymers, synthesis methods therefore, and hydrogels and biomaterials made there from. US7297348 (2007)
[35]
Shastri V, Sussman E, Jayagopal A. Functionalized solid lipid nanoparticles and methods of making and using same. US2006083781 (2006)
[36]
Desimone JM, Rolland JP, Exner AE, et al. Nanoparticle fabrication methods, systems, and materials. WO2007024323 (2007)
[37]
Kurzrock R, Li L, Mehta K, Aggarawal BB. Liposomal curcumin for treatment of cancer. US7968115 (2011)
[38]
Au J, Wientjes MG. Tumor targeting drug-loaded particles. US8043631 (2011)
[39]
Hossainy SFA, Ludwing FN, Sridharan S. Nanoparticle releasing medical devices. US8043631 (2011)
[40]
Majoros IJ, Williams CR, Tomalia DA, Baker JR Jr. New dendrimers: Synthesis and characterization of POPAM-PAMAM hybrid dendrimers. Macromol 2008; 41(22): 8372-9.
[41]
Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009; 30(8): 1627-34.
[42]
Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release 2004; 98(3): 415-26.
[43]
Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 2006; 27(22): 4132-40.
[44]
Jayagopal A, Sussman EM, Shastri VP. Functionalized solid lipid nanoparticles for transendothelial delivery. IEEE Trans Nanobiosci 2008; 7(1): 28-34.
[45]
Menaa F, Menaa B. Development of mitotane lipid nanocarriers and enantiomers: Two-in-one solution to efficiently treat adreno-cortical carcinoma. Curr Med Chem 2012; 19(34): 5854-62.
[46]
Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, Desimone JM. Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. J Control Release 2007; 121(1): 10-8.
[47]
Kurzrock R, Li L. Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. J Clin Oncol 2005; 23(16 suppl.): 4091-3.
[48]
Ryan RO. Lipophilic nucleic acid delivery vehicle and methods of use thereof. US8268796 (2012)
[49]
Ghosh M, Ren G, Simonsen JB, Ryan RO. Cationic lipid nanodisks as an siRNA delivery vehicle. Biochem Cell Biol 2014; 92(3): 200-5.
[50]
Crosby NM, Ghosh M, Su B, Beckstead JA, Kamei A, Simonsen JB, et al. Anti-CD20 single chain variable antibody fragment-apolipoprotein AI chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas. Biochem Cell Biol 2015; 93(4): 343-50.
[51]
Singh AT, Ghosh M, Forte TM, Ryan RO, Gordon LI. Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leuk Lymphoma 2011; 52(8): 1537-43.
[52]
Ghosh M, Ryan RO. ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine 2014; 9(6): 763-71.
[53]
Thaxton CS, Damiano MG, Zhang H, et al. Nanostructures for treating cancers and other conditions. US2015064255 (2015)
[54]
Yang S, Damiano MG, Zhang H, Tripathy S, Luthi AJ, Rink JS, et al. Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Natl Acad Sci USA 2013; 110(7): 2511-6.
[55]
Bell JB, Rink JS, Eckerdt F, Clymer J, Goldman S, Thaxton CS, et al. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci Rep 2018; 8(1): 1211-7.
[56]
Schwendeman A, Cohen M, Subramanian C, et al. Compositions and methods for disease treatment using nanoparticle delivered compounds. US2017157149 (2017)
[57]
Kuai R, Subramanian C. Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. Int J Nanomed 2017; 12: 658-63.
[58]
Subramanian C, Kuai R, Zhu Q, White P, Moon JJ, Schwendeman A, et al. Synthetic high-density lipoprotein nanoparticles: A novel therapeutic strategy for adrenocortical carcinomas. Surgery 2016; 159(1): 284-95.
[59]
Tamarkin L, Paciotti GF, Huhta MS. Nanotherapeutic colloidal metal compositions and methods. US2015018486 (2017)
[60]
Tamarkin L, Paciotti GF, Huhta MS. Nanotherapeutic colloidal metals. US2009104114 (2009)
[61]
Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 6(24): 6139-49.
[62]
Montclare JK, Frezzo J, Dai M, Chen R. Protein polymer gold nanoparticle hybrid materials for small molecule delivery. US2017196984 (2017)
[63]
Dai M, Frezzo JA, Sharma E, Chen R, Singh N, Yuvienco C, et al. Engineered protein polymer-gold nanoparticle hybrid materials for small molecule delivery. J Nanomed Nanotechnol 2016; 7(1)
[64]
Rotello VM, Mout R. Nanoparticle-protein complex for intracellular protein delivery. US20180228 (2018)
[65]
Mout R, Rotello VM. Cytosolic and nuclear delivery of crispr/cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles. Bio Protoc 2017; 7(20): 12-9.
[66]
Mout R, Rotello VM. A general method for intracellular protein delivery through ‘E-tag’ protein engineering and arginine functionalized gold particles. Bio Protoc 2017; 7(24): e2661.
[67]
Wang B, Kiani MF, Tang Y. Compositions and methods for treatment of cancer. US2015366993. (2015)
[68]
Tang Y, Soroush F, Tong Z, Kiani MF, Wang B. Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int J Nanomedicine 2017; 12: 671-7.
[69]
Dumont N, Espelin C, Geretti E, et al. Treatment of HER2-intermediate cancer. WO2017136770 (2017)
[70]
Espelin CW, Leonard SC, Geratti E, Wickham TJ, Hendriks BS. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res 2016; 76(6): 1517-27.
[71]
Miller K, Cortes J, Hurvitz SA, Krop IE, Tripathy D, Verma S, et al. HERMIONE: A randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracucline.naive, HER2-positive, locally advanced/metastatic breast cancer. MBC Cancer 2016; 16: 352-8.
[72]
Reynolds JG, Geretti E, Hendriks BS, Lee H, Leonard SC, Klinz SG. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol Appl Pharmacol 2012; 262(1): 1-10.
[73]
Chang EH, Kim S, Rait A. Targeted liposomes. US2014120157 (2014)
[74]
Kim SS, Rait A, Kim E, DeMarco J, Pirollo KF, Chang EH. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett 2015; 369(1): 250-8.