[1]
Dhivya, S.; Ajita, J.; Selvamurugan, N. Metallic nanomaterials for bone tissue engineering. J. Biomed. Nanotechnol., 2015, 11(10), 1675-1700.
[2]
Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol., 2008, 3(Suppl. 3), S131-S139.
[3]
Poundarik, A.A.; Wu, P.C.; Evis, Z.; Sroga, G.E.; Ural, A.; Rubin, M.; Vashishth, D. A direct role of collagen glycation in bone fracture. J. Mech. Behav. Biomed, 2015, 52, 120-130.
[4]
Porter, J.R.; Porter, J.R.; Ruckh, T.T.; Popat, K.C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog., 2009, 25(6), 1539-1560.
[5]
Taichman, R.S. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood, 2005, 105(7), 2631-2639.
[6]
Wozney, J.M. Novel regulators of bone formation: Molecular clones and activities. Science, 1988, 242(4885), 1528-1534.
[7]
Sims, N.A.; Martin, T.J. Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. Bonekey Rep., 2014, 3, 481.
[8]
Bruder, S.P.; Fink, D.J.; Caplan, A.I. Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J. Cell. Biochem., 1994, 56(3), 283-294.
[9]
Ducy, P.; Schinke, T.; Karsenty, G. The osteoblast: A sophisticated fibroblast under central surveillance. Science, 2000, 289(5484), 1501-1504.
[10]
Caetano-Lopes, J.; Canhão, H.; Fonseca, J.E. Osteoblasts and bone formation. Acta Reumatol. Port., 2007, 32(2), 103-110.
[11]
Olsen, B.R.; Reginato, A.M.; Wang, W. Bone development. Annu. Rev. Cell Dev. Biol., 2000, 16(1), 191-220.
[12]
Manolagas, S.C.; Jilka, R.L. Bone marrow, cytokines, and bone remodeling-emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med., 1995, 332(5), 305-311.
[13]
Manolagas, S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 2000, 21(2), 115-137.
[14]
Jang, W.G.; Kim, E.J.; Kim, D.K.; Ryoo, H.M.; Lee, K.B.; Kim, S.H.; Choi, H.S.; Koh, J.T. BMP2 regulates osteocalcin expression via Runx2 mediated ATF6 gene transcription. J. Biol. Chem., 2012, 287(2), 905-915.
[15]
Komori, T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5), 755-764.
[16]
Nakashima, K. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1), 17-29.
[17]
Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272.
[18]
Shorey, S.; Heersche, J.N.M.; Manolson, M.F. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone, 2004, 35(4), 909-917.
[19]
Ogura, K.; Iimura, T.; Makino, Y.; Sugie-Oya, A.; Takakura, A.; Takao-Kawabata, R.; Ishizuya, T.; Moriyama, K.; Yamaguchi, A. Short-term intermittent administration of parathyroid hormone facilitates osteogenesis by different mechanisms in cancellous and cortical bone. Bone Rep., 2016, 5, 7-14.
[20]
Lee, H.W.; Suh, J.H.; Kim, A.Y.; Lee, Y.S.; Park, S.Y.; Kim, J.B. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol. Endocrinol., 2006, 20(10), 2432-2443.
[21]
Kang, H.; Hata, A. The role of microRNAs in cell fate determination of mesenchymal stem cells: Balancing adipogenesis and osteogenesis. BMB Rep., 2015, 48(6), 319.
[22]
Vishal, M.; Ajeetha, R.; Keerthana, R.; Selvamurugan, N. Regulation of Runx2 by histone deacetylases in bone. Curr. Protein Pept. Sci., 2016, 17(4), 343-351.
[23]
Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res., 2007, 17(3), 195.
[24]
Sengupta, N.; Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem., 2004, 93(1), 57-67.
[25]
Marks, P.A.; Miller, T.; Richon, V.M. Histone deacetylases. Curr. Opin. Pharmacol., 2003, 3(4), 344-351.
[26]
Lombardi, P.M.; Cole, K.E.; Dowling, D.P.; Christianson, D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol., 2011, 21(6), 735-743.
[27]
Christianson, D.W. Arginase: Structure, mechanism, and physiological role in male and female sexual arousal. Acc. Chem. Res., 2005, 38(3), 191-201.
[28]
Dowling, D.P.; Di Costanzo, L.; Gennadios, H.A.; Christianson, D.W. Evolution of the arginase fold and functional diversity. Cell. Mol. Life Sci., 2008, 65(13), 2039-2055.
[29]
Bottomley, M.J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem., 2008, 283(39), 26694-26704.
[30]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334.
[31]
Polo, S.E.; Geneviève, A. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett., 2005, 220(1), 1-9.
[32]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749.
[33]
Yang, X.J.; Seto, E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr. Opin. Genet. Dev., 2003, 13(2), 143-153.
[34]
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194.
[35]
Carmen, A.A.; Griffin, P.R.; Calaycay, J.R.; Rundlett, S.E.; Suka, Y.; Grunstein, M. Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12356-12361.
[36]
Hu, E.; Chen, Z.; Fredrickson, T.; Zhu, Y.; Kirkpatrick, R.; Zhang, G.F.; Johanson, K.; Sung, C.M.; Liu, R.; Winkler, J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem., 2000, 275(20), 15254-15264.
[37]
Lee, H.; Rezai-Zadeh, N.; Seto, E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase. Mol. Cell. Biol., 2004, 24(2), 765-773.
[38]
Kirsh, O.; Seeler, J.S.; Pichler, A.; Gast, A.; Müller, S.; Miska, E.; Mathieu, M.; Harel-Bellan, A.; Kouzarides, T.; Melchior, F.; Dejean, A. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J., 2002, 21(11), 2682-2691.
[39]
Kosik, K.S. MicroRNAs and cellular phenotypy. Cell, 2010, 143(1), 21-26.
[40]
Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14.
[41]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58.
[42]
Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res., 2004, 14(10a), 1902-1910.
[43]
Blahna, M.T.; Hata, A. Smad-mediated regulation of microRNA biosynthesis. FEBS Lett., 2012, 586(14), 1906-1912.
[44]
Lee, I.; Ajay, S.S.; Yook, J.I.; Kim, H.S.; Hong, S.H.; Kim, N.H.; Dhanasekaran, S.M.; Chinnaiyan, A.M.; Athey, B.D. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res., 2009, 19, 1175-1183.
[45]
Shin, C.; Nam, J.W.; Farh, K.K.; Chiang, H.R.; Shkumatava, A.; Bartel, D.P. Expanding the microRNA targeting code: Functional sites with centered pairing. Mol. Cell, 2010, 38(6), 789-802.
[46]
Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet., 2012, 13(4), 271.
[47]
Vimalraj, S.; Selvamurugan, N. MicroRNAs: Synthesis, gene regulation and osteoblast differentiation. Curr. Issues Mol. Biol., 2012, 15(1), 7-18.
[48]
Vasudevan, S. Posttranscriptional upregulation by microRNAs. WIRES RNA, 2012, 3(3), 311-330.
[49]
Abdallah, B.M.; Moustapha, K. Human mesenchymal stem cells: From basic biology to clinical applications. Gene Ther., 2008, 15(2), 109.
[50]
Inose, H.; Ochi, H.; Kimura, A.; Fujita, K.; Xu, R.; Sato, S.; Iwasaki, M.; Sunamura, S.; Takeuchi, Y.; Fukumoto, S.; Saito, K.; Nakamura, T.; Siomi, H.; Ito, H.; Arai, Y.; Shinomiya, K.; Takeda, S. A microRNA regulatory mechanism of osteoblast differentiation. Proc. Natl. Acad. Sci. USA, 2009, 106(49), 20794-20799.
[51]
Arfat, Y.; Basra, M.A.R.; Shahzad, M.; Majeed, K.; Mahmood, N.; Munir, H. miR-208a-3p suppresses osteoblast differentiation and inhibits bone formation by targeting ACVR1. Mol. Ther. Nucleic Acids, 2018, 11, 323-336.
[52]
Lian, J.B.; Stein, G.S.; van Wijnen, A.J.; Stein, J.L.; Hassan, M.Q.; Gaur, T.; Zhang, Y. MicroRNA control of bone formation and homeostasis. Nat. Rev. Endocrinol., 2012, 8, 212-227.
[53]
Vimalraj, S.; Partridge, N.C.; Selvamurugan, N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J. Cell. Physiol., 2014, 229, 1236-1244.
[54]
Miyaki, S.; Sato, T.; Inoue, A.; Otsuki, S.; Ito, Y.; Yokoyama, S. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev., 2010, 24(11), 1173-1185.
[55]
Vishal, M.; Vimalraj, S.; Ajeetha, R.; Gokulnath, M.; Keerthana, R.; He, Z.; Partridge, N.C.; Selvamurugan, N. MicroRNA-590-5p stabilizes Runx2 by targeting Smad7 during osteoblast differentiation. J. Cell. Physiol., 2017, 232, 371-380.
[56]
Fang, S.; Deng, Y.; Gu, P.; Fan, X. MicroRNAs regulate bone development and regeneration. Int. J. Mol. Sci., 2015, 16(4), 8227-8253.
[57]
Mohanakrishnan, V.; Balasubramanian, A.; Mahalingam, G.; Partridge, N.C.; Ramachandran, I.; Selvamurugan, N. Parathyroid hormone-induced down-regulation of miR-532-5p for matrix metalloproteinase-13 expression in rat osteoblasts. J. Cell. Biochem., 2018, 119, 6181-6193.
[58]
Shivdasani, R.A. MicroRNAs: Regulators of gene expression and cell differentiation. Blood, 2006, 108(12), 3646-3653.
[59]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335.
[60]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Schwabe, J.W.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67.
[61]
Itoh, T.; Fairall, L.; Muskett, F.W.; Milano, C.P.; Watson, P.J.; Arnaudo, N.; Schwabe, J.W. Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting. Nucleic Acids Res., 2015, 43(4), 2033-2044.
[62]
Watson, P.J.; Fairall, L.; Schwabe, J.W. Nuclear hormone receptor co-repressors: structure and function. Mol. Cell. Endocrinol., 2012, 348(2), 440-449.
[63]
Bantscheff, M.; Hopf, C.; Savitski, M.M.; Dittmann, A.; Grandi, P.; Michon, A.M.; Boesche, M. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol., 2011, 29(3), 255.
[64]
Watson, P.J.; Millard, C.J.; Riley, A.M.; Robertson, N.S.; Wright, L.C.; Godage, H.Y.; Schwabe, J.W. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun., 2016, 7, 11262.
[65]
Bradley, E.W.; McGee-Lawrence, M.E.; Westendorf, J.J. Hdac-mediated control of endochondral and intramembranous ossification. Crit. Rev. Eukar. Gene, 2011, 21(2), 101-113.
[66]
Cantley, M.D.; Fairlie, D.P.; Bartold, P.M.; Marino, V.; Gupta, P.K.; Haynes, D.R. Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis. Rheumatology, 2015, 54(9), 1713-1723.
[67]
Jensen, E.D.; Nair, A.K.; Westendorf, J.J. Histone deacetylase co-repressor complex control of Runx2 and bone formation. Crit. Rev. Eukar. Gene, 2007, 17(3), 187-196.
[68]
Jin, J.; Iakova, P.; Jiang, Y.; Lewis, K.; Sullivan, E.; Jawanmardi, N.; Timchenko, N. Transcriptional and translational regulation of C/EBPbeta-HDAC1 complexes controls different levels of p53, SIRT1 and PGC1alpha proteins at early and late stages of liver cancer. J. Biol. Chem., 2013, 288(20), 14451-14462.
[69]
Wilting, R.H.; Yanover, E.; Heideman, M.R.; Jacobs, H.; Horner, J.; Van Der Torre, J.; Dannenberg, J.H. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J., 2010, 29(15), 2586-2597.
[70]
Zhang, Y.; Ma, C.; Liu, X.; Wu, Z.; Yan, P.; Ma, N.; Zhao, Q. Epigenetic landscape in PPARγ2 in the enhancement of adipogenesis of mouse osteoporotic bone marrow stromal cell. Biochim. Biophys. Acta, 2015, 1852(11), 2504-2516.
[71]
Wang, J.; Wang, C.D.; Zhang, N.; Tong, W.X.; Zhang, Y.F.; Shan, S.Z.; Li, Q.F. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis., 2017, 7(5), e2221.
[72]
Chen, J.; Zhou, J.; Chen, X.; Yang, B.; Wang, D.; Yang, P.; Li, H. miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumour Biol., 2015, 36(10), 8221-8822.
[73]
Poddar, S.; Kesharwani, D.; Datta, M. Histone deacetylase inhibition regulates miR-449a levels in skeletal muscle cells. Epigenetics, 2016, 11(8), 579-587.
[74]
Kushwaha, P.; Khedgikar, V.; Sharma, D.; Yuen, T.; Gautam, J.; Ahmad, N.; Bhadada, S.K.; Zaidi, M.; Trivedi, R. MicroRNA-874-3p exerts skeletal anabolic effects epigenetically during weaning by suppressing Hdac1. J. Biol. Chem., 2016, 291(8), 3959-3966.
[75]
McGee-Lawrence, M.; Bradley, E.; Dudakovic, A.; Carlson, S.; Ryan, Z.; Kumar, R.; Dadsetan, M.; Yaszemski, M.; Chen, Q.; An, K.; Westendorf, J. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone, 2013, 52, 296-307.
[76]
Bhaskara, S.; Chyla, B.J.; Amann, J.M.; Knutson, S.K.; Cortez, D.; Sun, Z.W.; Hiebert, S.W. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell, 2008, 30(1), 61-72.
[77]
Hesse, E.; Saito, H.; Kiviranta, R.; Correa, D.; Yamana, K.; Neff, L.; Toben, D.; Duda, G.; Atfi, A.; Geoffroy, V.; Horne, W.; Baron, R. Zfp521 controls bone mass by hdac3-dependent attenuation of Runx2 activity. J. Cell Biol., 2010, 191, 1271-1283.
[78]
Wu, M.; Hesse, E.; Morvan, F.; Zhang, J.P.; Correa, D.; Rowe, G.C.; Baron, R. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone, 2009, 44(4), 528-536.
[79]
Kim, J.; Ko, J. A novel PPARγ2 modulator slzip controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death Differ., 2014, 21, 1642-1655.
[80]
Bradley, E.W.; Carpio, L.R.; Van Wijnen, A.J.; McGee-Lawrence, M.E.; Westendorf, J.J. Histone deacetylases in bone development and skeletal disorders. Physiol. Rev., 2015, 95(4), 1359-1381.
[81]
Kim, H.N.; Lee, J.H.; Bae, S.C.; Ryoo, H.M.; Kim, H.H.; Ha, H.; Lee, Z.H. Histone deacetylase inhibitor MS‐275 stimulates bone formation in part by enhancing Dhx36‐mediated TNAP transcription. J. Bone Miner. Res., 2011, 26(9), 2161-2173.
[82]
McGee-Lawrence, M.E.; Westendorf, J.J. Histone deacetylases in skeletal development and bone mass maintenance. Gene, 2011, 474(1), 1-11.
[83]
Meng, F.; Li, Z.; Zhang, Z.; Yang, Z.; Kang, Y.; Zhao, X.; Wu, P. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics, 2018, 8(10), 2862.
[84]
Gantt, S.L.; Joseph, C.G.; Fierke, C.A. Activation and inhibition of histone deacetylase 8 by monovalent cations. J. Biol. Chem., 2010, 285(9), 6036-6043.
[85]
Haberland, M.; Mokalled, M.H.; Montgomery, R.L.; Olson, E.N. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev., 2009, 23(14), 1625-1630.
[86]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32.
[87]
Fu, Y.; Zhang, P.; Ge, J.; Cheng, J.; Dong, W.; Yuan, H.; Du, Y.; Yang, M.; Sun, R.; Jiang, H. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibit-ing histone H3K9 acetylation and RUNX2 activity. Int. J. Biochem. Cell Biol., 2014, 54, 68-77.
[88]
McGee-Lawrence, M.E.; McCleary-Wheeler, A.L.; Secreto, F.J.; Razidlo, D.F.; Zhang, M.; Stensgard, B.A.; Westendorf, J.J. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone, 2011, 48(5), 1117-1126.
[89]
Chen, W.; Chen, L.; Zhang, Z.; Meng, F.; Huang, G.; Sheng, P.; Liao, W. MicroRNA-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation. Biochim. Biophys. Acta, 2016, 1863(12), 2881-2891.
[90]
Verdin, E.; Dequiedt, F.; Kasler, H.G. Class II histone deacetylases: versatile regulators. Trends Genet., 2003, 19(5), 286-293.
[91]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673.
[92]
Grozinger, C.M.; Schreiber, S.L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 7835-7840.
[93]
Yang, X.J.; Grégoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884.
[94]
McKinsey, T.A.; Zhang, C.L.; Olson, E.N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev., 2001, 11(5), 497-504.
[95]
Miska, E.A.; Karlsson, C.; Langley, E.; Nielsen, S.J.; Pines, J.; Kouzarides, T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J., 1999, 18(18), 5099-5107.
[96]
Martin, M.; Kettmann, R.; Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene, 2007, 26(37), 5450.
[97]
Wang, A.H.; Bertos, N.R.; Vezmar, M.; Pelletier, N.; Crosato, M.; Heng, H.H.; Yang, X.J. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell. Biol., 1999, 19(11), 7816-7827.
[98]
Martin, M.; Kettmann, R.; Dequiedt, F. Class IIa histone deacetylases: Conducting development and differentiation. Int. J. Dev. Biol., 2009, 53(2-3), 291-301.
[99]
Clocchiatti, A.; Florean, C.; Brancolini, C. Class IIa HDACs: From important roles in differentiation to possible implications in tumourigenesis. J. Cell. Mol. Med., 2011, 15(9), 1833-1846.
[100]
Shimizu, E.; Nakatani, T.; He, Z.; Partridge, N.C. Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J. Biol. Chem., 2014, 289(31), 21340-21350.
[101]
Ko, J.Y.; Chuang, P.C.; Ke, H.J.; Chen, Y.S.; Sun, Y.C.; Wang, F.S. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone, 2015, 81, 80-88.
[102]
Zhao, W.; Zhang, S.; Wang, B.; Huang, J.; Lu, W.W.; Chen, D. Runx2 and microRNA regulation in bone and cartilage diseases. Ann. N. Y. Acad. Sci., 2016, 1383(1), 80-87.
[103]
Li, Z.; Hassan, M.Q.; Jafferji, M.; Aqeilan, R.I.; Garzon, R.; Croce, C.M.; Lian, J.B. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem., 2009, 284(23), 15676-15684.
[104]
Tuddenham, L.; Wheeler, G.; Ntounia-Fousara, S.; Waters, J.; Hajihosseini, M.K.; Clark, I.; Dalmay, T. The cartilage specific microRNA‐140 targets histone deacetylase 4 in mouse cells. FEBS Lett., 2006, 580(17), 4214-4217.
[105]
Kang, J.S.; Alliston, T.; Delston, R.; Derynck, R. Repression of Runx2 function by TGF‐β through recruitment of class II histone deacetylases by Smad3. EMBO J., 2005, 24(14), 2543-2555.
[106]
Vega, R.B.; Matsuda, K.; Oh, J.; Barbosa, A.C.; Yang, X.; Meadows, E.; Karsenty, G. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell, 2004, 119(4), 555-566.
[107]
Jeon, E.J.; Lee, K.Y.; Choi, N.S.; Lee, M.H.; Kim, H.N.; Jin, Y.H.; Oh, B.C. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J. Biol. Chem., 2006, 281(24), 16502-16511.
[108]
Maeda, S.; Hayashi, M.; Komiya, S.; Imamura, T.; Miyazono, K. Endogenous TGF‐β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J., 2004, 23(3), 552-563.
[109]
Bodine, P.V.; Komm, B.S. Wnt signaling and osteoblastogenesis. Rev. Endocr. Metab. Disord., 2006, 7(1-2), 33-39.
[110]
Ikenoue, T.; Jingushi, S.; Urabe, K.; Okazaki, K.; Iwamoto, Y. Inhibitory effects of activin‐A on osteoblast differentiation during cultures of fetal rat calvarial cells. J. Cell. Biochem., 1999, 75(2), 206-214.
[111]
Eijken, M.; Swagemakers, S.; Koedam, M.; Steenbergen, C.; Derkx, P.; Uitterlinden, A.G.; van Leeuwen, J.P. The activin A-follistatin system: Potent regulator of human extracellular matrix mineralization. FASEB J., 2007, 21(11), 2949-2960.
[112]
Caunt, C.J.; Rivers, C.A.; Conway-Campbell, B.L.; Norman, M.R.; McArdle, C.A. EGF receptor and protein kinase C signaling to ERK2: Spatiotemporal regulation of ERK2 by dual-specificity phosphatases. J. Biol. Chem., 2008, 283(10), 6241-6252.
[113]
Daniels, D.L.; Weis, W.I. ICAT inhibits β-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol. Cell, 2002, 10(3), 573-584.
[114]
Trompeter, H.I.; Dreesen, J.; Hermann, E.; Iwaniuk, K.M.; Hafner, M.; Renwick, N.; Wernet, P. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics, 2013, 14(1), 111.
[115]
Yuan, Y.; Zhang, L.; Tong, X.; Zhang, M.; Zhao, Y.; Guo, J.; Zou, J. Mechanical stress regulates bone metabolism through micrornas. J. Cell. Physiol., 2017, 232(6), 1239-1245.
[116]
Xiao, Q.; Huang, L.; Zhang, Z.; Chen, X.; Luo, J.; Zhang, Z.; Cao, K. Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4. Oncol. Res., 2017, 25(2), 267-275.
[117]
Moorthi, A.; Vimalraj, S.; Avani, C.; He, Z.; Partridge, N.C.; Selvamurugan, N. Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. Int. J. Biol. Macromol., 2013, 56, 181-185.
[118]
Song, J.; Jin, E.H.; Kim, D.; Kim, K.Y.; Chun, C.H.; Jin, E.J. MicroRNA-222 regulates MMP-13 via targeting HDAC4 during osteoarthritis pathogenesis. BBA Clin., 2015, 3, 79-89.
[119]
Chen, W.; Sheng, P.; Huang, Z.; Meng, F.; Kang, Y.; Huang, G.; Zhang, Z. MicroRNA-381 regulates chondrocyte hypertrophy by inhibiting histone deacetylase 4 expression. Int. J. Mol. Sci., 2016, 17(9), 1377.
[120]
Li, P.; Wei, X.; Guan, Y.; Chen, Q.; Zhao, T.; Sun, C.; Wei, L. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. FASEB J., 2014, 28(9), 3930-3941.
[121]
121. Blixt, N.C.; Faulkner, B.K.; Astleford, K.; Lelich, R.; Schering, J.; Spencer, E.; Gopalakrishnan, R.; Jensen, E.D.; Mansky, K.C. Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One, 2017, 12(9), e0185441.
[122]
Li, H.; Xie, H.; Liu, W.; Hu, R.; Huang, B.; Tan, Y.F.; Xu, K.; Sheng, Z.F.; Zhou, H.D.; Wu, X.P.; Luo, X.H. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest., 2009, 119(12), 3666-3677.
[123]
Alliston, T.; Choy, L.; Ducy, P.; Karsenty, G.; Derynck, R. TGF‐β‐induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J., 2001, 20(9), 2254-2272.
[124]
Huang; Yiping. Long noncoding RNA H19 promotes osteoblast differentiation via TGF‐β1/Smad3/HDAC signaling pathway by deriving miR‐675. Stem Cells, 2015, 33(12), 3481-3492.
[125]
Petrie, K.; Guidez, F.; Howell, L.; Healy, L.; Waxman, S.; Greaves, M.; Zelent, A. The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem., 2003, 278(18), 16059-16072.
[126]
Clocchiatti, A.; Florean, C.; Brancolini, C. Class IIa HDACs: From important roles in differentiation to possible implications in tumourigenesis. J. Cell. Mol. Med., 2011, 15(9), 1833-1846.
[127]
Jin, Z.; Wei, W.; Huynh, H.; Wan, Y. HDAC9 inhibits osteoclastogenesis via mutual suppression of PPARγ/RANKL signaling. Mol. Endocrinol., 2015, 29(5), 730-738.
[128]
Li, L.; Liu, W.; Wang, H.; Yang, Q.; Zhang, L.; Jin, F.; Jin, Y. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death Dis., 2018, 9(5), 480.
[129]
Scognamiglio, A.; Nebbioso, A.; Manzo, F.; Valente, S.; Mai, A.; Altucci, L. HDAC-class II specific inhibition involves HDAC proteasome-dependent degradation mediated by RANBP2. Biochim. Biophys. Acta, 2008, 1783(10), 2030-2038.
[130]
Rao, R.; Nalluri, S.; Kolhe, R.; Yang, Y.; Fiskus, W.; Chen, J.; Ha, K.; Buckley, K.M.; Balusu, R.; Coothankandaswamy, V.; Joshi, A.; Atadja, P.; Bhalla, K.N. Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol. Cancer Ther., 2010, 9(4), 942-952.
[131]
Powers, J.; Lienlaf, M.; Perez-Villarroel, P.; Deng, S.; Knox, T.; Villagra, A.; Sahakian, E. Expression and function of histone deacetylase 10 (HDA10) in B cell malignancies. Methods Mol. Biol., 2016, 1436, 129-145.
[132]
Huang, S.; Wang, S.; Bian, C.; Yang, Z.; Zhou, H.; Zeng, Y.; Li, H.; Han, Q.; Zhao, R.C. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev., 2012, 21(13), 2531-2540.
[133]
Westendorf, J.J.; Zaidi, S.K.; Cascino, J.E.; Kahler, R.; van Wijnen, A.J.; Lian, J.B.; Yoshida, M.; Stein, G.S.; Li, X. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21CIP1/WAF1 promoter. Mol. Cell. Biol., 2002, 22(22), 7982-7992.
[134]
Berger, S.L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev., 2002, 12(2), 142-148.
[135]
Huang, J.; Zhao, L.; Xing, L.; Chen, D. MicroRNA‐204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells, 2010, 28(2), 357-364.
[136]
Enomoto, H.; Furuichi, T.; Zanma, A.; Yamana, K.; Yoshida, C.; Sumitani, S.; Yamamoto, H.; Enomoto-Iwamoto, M.; Iwamoto, M.; Komori, T. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J. Cell Sci., 2004, 117(3), 417-425.
[137]
Takigawa, S.; Chen, A.; Wan, Q.; Na, S.; Sudo, A.; Yokota, H.; Hamamura, K. Role of miR-222-3p in c-Src-mediated regulation of osteoclastogenesis. Int. J. Mol. Sci., 2016, 17(2), 240.
[138]
Sun, T.; Leung, F.; Lu, W.W. MiR-9-5p, miR-675-5p and miR-138-5p damages the strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion. Int. J. Mol. Sci., 2016, 17(2), 236.
[139]
Shi, C.; Qi, J.; Huang, P.; Jiang, M.; Zhou, Q.; Zhou, H.; Deng, L. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone, 2014, 68, 67-75.