[1]
Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17, 12276-12286.
[2]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 2017, 55, 1-2.
[3]
Strempel, N.; Strehmel, J.; Overhage, J. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr. Pharm. Des., 2015, 21, 67-84.
[4]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6, 1543-1575.
[5]
Narayana, J.L.; Chen, J.Y. Antimicrobial peptides: Possible anti-infective agents. Peptides, 2015, 72, 88-94.
[6]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[7]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.; Lima, L.A.; Sampaio, K.B.; Dohms, S.S.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of Antimicrobial Peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22, 234-248.
[8]
Huerta-Cantillo, J.; Navarro-García, F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad, 2016, 5, 96-115.
[9]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15, 40-56.
[10]
Kosikowska, P.; Lesner, A. Antimicrobial Peptides (AMPs) as drug candidates: A patent review (2003-2015). Expert Opin. Ther. Pat., 2016, 26, 689-702.
[11]
Gupta, S.K.; Shukla, P. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A review. Front. Pharmacol., 2017, 8, 419.
[12]
Li, Y.F.; Chen, Z.X. RAPD: A database of recombinantly-produced antimicrobial peptides. FEMS Microbiol. Lett., 2008, 289, 126-129.
[13]
Li, Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system. Protein Expr. Purif., 2013, 87, 72-78.
[14]
Xia, L.; Zhang, F.; Liu, Z.; Ma, J.I.; Yang, J. Expression and characterization of cecropinXJ, a bioactive antimicrobial peptide from Bombyx mori (Bombycidae, Lepidoptera) in Escherichia coli. Exp. Ther. Med., 2013, 5, 1745-1751.
[15]
Aleinein, R.A.; Hamoud, R.; Schäfer, H.; Wink, M. Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities. Appl. Microbiol. Biotechnol., 2013, 97, 3535-3543.
[16]
Orrapin, S.; Intorasoot, S. Recombinant expression of novel protegrin-1 dimer and LL-37-linker–histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner. Protein Expr. Purif., 2014, 93, 46-53.
[17]
Luan, C.; Zhang, H.W.; Song, D.G.; Xie, Y.G.; Feng, J.; Wang, Y.Z. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl. Microbiol. Biotechnol., 2014, 98, 3651-3658.
[18]
Chen, W.; Cotton, M.L. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr. Purif., 2014, 102, 63-68.
[19]
Luan, C.; Xie, Y.G.; Pu, Y.T.; Zhang, H.W.; Han, F.F.; Feng, J.; Wang, Y.Z. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can. J. Microbiol., 2014, 60, 113-120.
[20]
Wang, X.J.; Wang, X.M.; Teng, D.; Zhang, Y.; Mao, R.Y.; Wang, J.H. Recombinant production of the antimicrobial peptide NZ 17074 in Pichia pastoris using SUMO 3 as a fusion partner. Lett. Appl. Microbiol., 2014, 59, 71-78.
[21]
Li, Y.; Wang, J.; Yang, J.; Wan, C.; Wang, X.; Sun, H. Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr. Purif., 2014, 95, 182-187.
[22]
Meiyalaghan, S.; Latimer, J.M.; Kralicek, A.V.; Shaw, M.L.; Lewis, J.G.; Conner, A.J.; Barrell, P.J. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res. Notes, 2014, 7, 777.
[23]
Herbel, V.; Schäfer, H.; Wink, M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules, 2015, 20, 14889-14901.
[24]
Shan, Y.; Dong, Y.; Jiang, D. Recombinant expression of a novel antimicrobial peptide consisting of human α-defensin 5 and Mytiluscoruscus mytilin-1 in Escherichia coli. J. Korean Soc. Appl. Biol. Chem., 2015, 58, 807-812.
[25]
Kuddus, M.R.; Rumi, F.; Tsutsumi, M.; Takahashi, R.; Yamano, M.; Kamiya, M.; Kikukawa, T.; Demura, M.; Aizawa, T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif., 2016, 122, 15-22.
[26]
Xing, L.W.; Tian, S.X.; Gao, W.; Yang, N.; Qu, P.; Liu, D.; Jiao, J.; Wang, J.; Feng, X.J. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris. Exp. Ther. Med., 2016, 12, 2324-2330.
[27]
Meng, D.M.; Zhao, J.F.; Ling, X.; Dai, H.X.; Guo, Y.J.; Gao, X.F. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr. Purif., 2017, 130, 90-99.
[28]
Lin, C.H.; Pan, Y.C.; Liu, F.W.; Chen, C.Y. Prokaryotic expression and action mechanism of antimicrobial LsGRP1 C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl. Microbiol. Biotechnol., 2017, 101, 8129-8138.
[29]
Mohanraj, U.; Kinnunen, O.; Kaya, M.E.; Aranko, A.S.; Viskari, H.; Linder, M. SUMO-based expression and purification of dermcidin-derived DCD-1L, a human antimicrobial peptideEscherichia
coli. bioRxiv; , 2018. 343418.
[30]
Ashcheulova, D.O.; Efimova, L.V.; Lushchyk, A.Y.; Yantsevich, A.V.; Baikov, A.N.; Pershina, A.G. Production of the recombinant antimicrobial peptide UBI18-35 in Escherichia coli. Protein Expr. Purif., 2018, 143, 38-44.
[31]
Zhang, M.; Shan, Y.; Gao, H.; Wang, B.; Liu, X.; Dong, Y.; Liu, X.; Yao, N.; Zhou, Y.; Li, X.; Li, H. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb. Cell Fact., 2018, 17, 18.
[32]
Cao, J.; de la Fuente-Nunez, C.; Ou, R.W.; Torres, M.D.; Pande, S.G.; Sinskey, A.J.; Lu, T.K. Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth. Biol., 2018, 7, 896-902.
[33]
Li, Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol. Appl. Biochem., 2009, 54, 1-9.
[34]
Li, Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr. Purif., 2011, 80, 260-267.
[35]
Schäfer, F.; Seip, N.; Maertens, B.; Block, H.; Kubicek, J. Purification of GST-tagged proteins. In: Methods in Enzymology (Laboratory Methods in Enzymology: Protein Part D); Lorsch, J.R., Ed.; Academic Press: Cambridge, MA, 2015; pp. 127-139.
[36]
Li, Y. Self-cleaving fusion tags for recombinant protein production. Biotechnol. Lett., 2011, 33, 869-881.
[37]
Kim, H.; Yoo, S.J.; Kang, H.A. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res., 2015, 15, 1-6.
[38]
Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol., 2014, 98, 5301-5317.
[39]
Chahardoli, M.; Fazeli, A.; Niazi, A.; Ghabooli, M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol. Biotechnol. Equip., 2018, 32, 714-723.
[40]
Yevtushenko, D.P.; Misra, S. Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, improved productivity, and production of therapeutics.Small Wonders: Peptides for Disease Control; Rajasekaran, K.; Cary, J.W.; Jaynes, J.M.; Montesinos, E., Eds.; American Chemical Society: Washington, D.C, 2012, Vol. 1095, pp. 445-458.
[41]
Wani, S.H.; Sah, S.K. Transgenic plants as expression factories for
bio pharmaceuticals. Research and Reviews: J. Bot. Sci, 2015.Phytopathology/ Genes & Diseases- S1.
[42]
Ghag, S.B.; Shekhawat, U.K.; Ganapathi, T.R. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One, 2012, 7, e39557.
[43]
Balaji, V.; Smart, C.D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanumly copersicum). Transgenic Res., 2012, 21, 23-37.
[44]
Fukuta, S.; Kawamoto, K.I.; Mizukami, Y.; Yoshimura, Y.; Ueda, J.I.; Kanbe, M. Transgenic tobacco plants expressing antimicrobial peptide bovine lactoferricin show enhanced resistance to phytopathogens. Plant Biotechnol., 2012, 29, 383-389.
[45]
Verma, S.S.; Yajima, W.R.; Rahman, M.H.; Shah, S.; Liu, J.J.; Ekramoddoullah, A.K.; Kav, N.N. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol. Biol., 2012, 79, 61-74.
[46]
Jung, Y.J.; Lee, S.Y.; Moon, Y.S.; Kang, K.K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep., 2012, 6, 39-46.
[47]
Rong, W.; Qi, L.; Wang, J.; Du, L.; Xu, H.; Wang, A.; Zhang, Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct. Integr. Genomics, 2013, 13, 403-409.
[48]
Wu, T.; Tang, D.; Chen, W.; Huang, H.; Wang, R.; Chen, Y. Expression of antimicrobial peptides thanatin (S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene, 2013, 527, 235-242.
[49]
Zeitler, B.; Bernhard, A.; Meyer, H.; Sattler, M.; Koop, H.U.; Lindermayr, C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Mol. Biol., 2013, 81, 259-272.
[50]
Patiño-Rodríguez, O.; Ortega-Berlanga, B.; Llamas-González, Y.Y.; Flores-Valdez, M.A.; Herrera-Díaz, A.; Montes-de-Oca-Luna, R.; Korban, S.S.; Alpuche-Solís, Á.G. Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult., 2013, 115, 99-106.
[51]
Bundó, M.; Montesinos, L.; Izquierdo, E.; Campo, S.; Mieulet, D.; Guiderdoni, E.; Rossignol, M.; Badosa, E.; Montesinos, E.; San Segundo, B.; Coca, M. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biol., 2014, 14, 102.
[52]
Vetchinkina, E.M.; Komakhina, V.V.; Vysotskii, D.A.; Zaitsev, D.V.; Smirnov, A.N.; Babakov, A.V.; Komakhin, R.A. Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens. Russ. J. Genet., 2016, 52, 939-951.
[53]
Hao, G.; Zhang, S.; Stover, E. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLoS One, 2017, 12, e0186810.
[54]
Holásková, E.; Galuszka, P.; Mičúchová, A.; Šebela, M.; Öz, M.T.; Frébort, I. Molecular farming in barley: Development of a novel production platform to produce human antimicrobial peptide LL‐37. Biotechnol. J., 2018, 13, e1700628.
[55]
Cary, J.W.; Rajasekaran, K.; Jaynes, J.M.; Cleveland, T.E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci., 2000, 154, 171-181.
[56]
Chahardoli, M.; Fazeli, A.; Ghabooli, M. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol. Biochem., 2018, 123, 414-421.
[57]
Rajasekaran, K.; Sayler, R.J.; Sickler, C.M.; Majumdar, R.; Jaynes, J.M.; Cary, J.W. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci., 2018, 270, 150-156.
[58]
Wang, Q.; Zhu, S.; Liu, Y.; Li, R.; Tan, S.; Wang, S.; Tang, L.; Chen, F. Overexpression of Jatropha curcas defensin (JcDef) enhances sheath blight disease resistance in tobacco. J. Phytopathol., 2017, 165, 15-21.
[59]
Luo, X.M.; Xie, C.J.; Wang, D.; Wei, Y.M.; Cai, J.; Cheng, S.S.; Yang, X.Y.; Sui, A.P. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl. Microbiol. Biotechnol., 2017, 101, 1073-1084.
[60]
Almasia, N.I.; Bazzini, A.A.; Hopp, H.E.; Vazquez‐Rovere, C.E. Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol. Plant Pathol., 2008, 9, 329-338.
[61]
Rivero, M.; Furman, N.; Mencacci, N.; Picca, P.; Toum, L.; Lentz, E.; Bravo-Almonacid, F.; Mentaberry, A. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol., 2012, 15, 334-343.
[62]
Goyal, R.K.; Hancock, R.E.; Mattoo, A.K.; Misra, S. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS One, 2013, 8, e77505.
[63]
Osusky, M.; Osuska, L.; Hancock, R.E.; Kay, W.W.; Misra, S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res., 2004, 13, 181-190.
[64]
Kobayashi, A.K.; Vieira, L.G.E. BespalhokFilho, J.C.; Leite, R.P.; Pereira, L.F.P.; Molinari, H.B.C.; Marques, V.V. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol., 2017, 149, 865-873.
[65]
Saharan, V.; Jain, D.; Pareek, S.; Pal, A.; Kumaraswamy, R.V.; Jakhar, S.K.; Singh, M. Viral, fungal and bacterial disease resistance in transgenic plants. In: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V., Eds.; Springer: Berlin, 2016; Vol. 2, pp. 627-656.
[66]
Khan, M.S. Plastid genome engineering in plants: Present status and future trends. Mol. Plant Breed., 2012, 3, 91-102.
[67]
Wang, Y.P.; Wei, Z.Y.; Zhang, Y.Y.; Lin, C.J.; Zhong, X.F.; Wang, Y.L.; Ma, J.Y. M, J.; Xing, S.-C. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int. J. Mol. Sci., 2015, 16, 4628-4641.
[68]
Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin‐101 and Protegrin‐1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J., 2011, 9, 100-115.
[69]
Hoelscher, M.; Forner, J.; Bock, R. Chloroplast produced antimicrobial peptide fusions for pharma and plant protection. The 3rd, Conference of the International Society for Plant Molecular Farming, Helsinki Congress Paasitorni, Finland, June 11-13. 2018, p. 196.
[70]
Dangi, A.K.; Sinha, R.; Dwivedi, S.; Gupta, S.K.; Shukla, P.S. Cell line techniques and gene editing tools for antibody production: A review. Front. Pharmacol., 2018, 9, 630.
[71]
Baweja, M.; Nain, L.; Kawarabayasi, Y.; Shukla, P. Current technological improvements in enzymes toward their biotechnological applications. Front. Microbiol., 2016, 7, 965.
[72]
Kumar, V.; Baweja, M.; Liu, H.; Shukla, P. Microbial enzyme engineering: Applications and perspectives. In: Recent Advances in Applied Microbiology; Shukla, P., Ed.; Springer: Singapore, 2017; pp. 259-273.
[73]
Tucker, A.T.; Leonard, S.P.; DuBois, C.D.; Knauf, G.A.; Cunningham, A.L.; Wilke, C.O.; Trent, M.S.; Davies, B.W. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell, 2018, 172, 618-628.
[74]
Haney, E.F.; Brito-Sánchez, Y.; Trimble, M.J.; Mansour, S.C.; Cherkasov, A.; Hancock, R.E. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep., 2018, 8, 1871.
[75]
Guralp, S.A.; Murgha, Y.E.; Rouillard, J.M.; Gulari, E. From design to screening: A new antimicrobial peptide discovery pipeline. PLoS One, 2013, 8, e59305.