[1]
SMC. Standards of Medical Care in Diabetes-2016: Summary of Revisions. Diabetes Care, 2016, 39(Suppl. 1), S4-S5.
[2]
IDF, IDF DIABETES ATLAS - 7TH EDITION.. 2015.
[3]
Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab., 2016, 20(4), 546-551.
[4]
ADM, American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care, 2014, 37(Suppl. 1), S14-S80.
[5]
Han, Y.F.; Sun, T.J.; Han, Y.Q.; Xu, G.; Liu, J.; Tao, R. Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(14), 2666-2670.
[9]
Khodaeian, M.; Enayati, S.; Tabatabaei-Malazy, O.; Amoli, M.M. Association between genetic variants and diabetes mellitus in iranian populations: A Systematic review of observational studies. J. Diabetes Res., 2015, 2015, 585917.
[10]
Wicker, L.S.; Clark, J.; Fraser, H.I.; Garner, V.E.; Gonzalez-Munoz, A.; Healy, B.; Howlett, S.; Hunter, K.; Rainbow, D.; Rosa, R.L.; Smink, L.J.; Todd, J.A.; Peterson, L.B. Type 1 diabetes genes and pathways shared by humans and NOD mice. J. Autoimmun., 2005, 25, 29-33.
[11]
Banatvala, J.E.; Bryant, J.; Schernthaner, G.; Borkenstein, M.; Schober, E.; Brown, D.; De Silva, L.M.; Menser, M.A.; Silink, M. Coxsackie B, mumps, rubella, and cytomegalovirus specific IgM responses in patients with juvenile-onset insulin-dependent diabetes mellitus in Britain, Austria, and Australia. Lancet, 1985, 1(8443), 1409-1412.
[12]
Honeyman, M.C.; Coulson, B.S.; Stone, N.L.; Gellert, S.A.; Goldwater, P.N.; Steele, C.E.; Couper, J.J.; Tait, B.D.; Colman, P.G.; Harrison, L.C. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes, 2000, 49(8), 1319-1324.
[13]
Honeyman, M.C.; Stone, N.L.; Harrison, L.C. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: Potential for mimicry with rotavirus and other environmental agents. Mol. Med., 1998, 4(4), 231-239.
[14]
Lempainen, J.; Vaarala, O.; Makela, M.; Veijola, R.; Simell, O.; Knip, M.; Hermann, R.; Ilonen, J. Interplay between PTPN22 C1858T polymorphism and cow’s milk formula exposure in type 1 diabetes. J. Autoimmun., 2009, 33(2), 155-164.
[15]
Group, T.S. Study design of the trial to reduce IDDM in the genetically at risk (TRIGR). Pediat. Diabetes, 2007, 8(3), 117-137.
[16]
Wherrett, D.K.; Daneman, D. Prevention of type 1 diabetes. Endocrinol. Metab. Clin. North Am., 2009, 38(4), 777-790.
[17]
Tabish, S.A. Is diabetes becoming the biggest epidemic of the twenty-first century? Intl. J. Health Sci. (Qassim), 2007, 1(2), V-VIII.
[18]
Jenkins, A.B.; Campbell, L.V. The genetics and pathophysiology of diabetes mellitus type II. J. Inherit. Metab. Dis., 2004, 27(3), 331-347.
[19]
Porte, D., Jr Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes, 1991, 40(2), 166-180.
[20]
Mitrakou, A.; Kelley, D.; Mokan, M.; Veneman, T.; Pangburn, T.; Reilly, J.; Gerich, J. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. New . Engl. J. Med., 1992, 326(1), 22-29.
[21]
Kahn, S.E. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab., 2001, 86(9), 4047-4058.
[22]
DeFronzo, R.A.; Ferrannini, E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes care, 1991, 14(3), 173-194.
[23]
Kruszynska, Y.T.; Olefsky, J.M. Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J. Investig. Med., 1996, 44(8), 413-428.
[24]
Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes. Res., 1998, 6(Suppl. 2), 51S-209S.
[25]
Beard, J.C.; Ward, W.K.; Halter, J.B.; Wallum, B.J.; Porte, D., Jr Relationship of islet function to insulin action in human obesity. J. Clin. Endocrinol. Metab., 1987, 65(1), 59-64.
[26]
Olefsky, J.; Farquhar, J.W.; Reaven, G. Relationship between fasting plasma insulin level and resistance to insulin-mediated glucose uptake in normal and diabetic subjects. Diabetes, 1973, 22(7), 507-513.
[27]
Rosenbloom, A.L.; Joe, J.R.; Young, R.S.; Winter, W.E. Emerging epidemic of type 2 diabetes in youth. Diabetes Care, 1999, 22(2), 345-354.
[28]
Dabelea, D.; Pettitt, D.J.; Jones, K.L.; Arslanian, S.A. Type 2 diabetes mellitus in minority children and adolescents. An emerging problem. Endocrinol. Metab. Clin. North Am., 1999, 28(4), 709-729. viii.
[29]
Sinha, R.; Fisch, G.; Teague, B.; Tamborlane, W.V.; Banyas, B.; Allen, K.; Savoye, M.; Rieger, V.; Taksali, S.; Barbetta, G.; Sherwin, R.S.; Caprio, S. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. New . Engl. J. Med., 2002, 346(11), 802-810.
[30]
Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res., 2012, 49(1), 35-43.
[31]
Landen, N.X.; Li, D.; Stahle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci., 2016, 73(20), 3861-3885.
[32]
Mustoe, T.A.; O’Shaughnessy, K.; Kloeters, O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstr. Surg., 2006, 117(7)(Suppl.), 35S-41S.
[33]
Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen., 2009, 17(6), 763-771.
[34]
Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212), 941-945.
[35]
Robson, M.C.; Steed, D.L.; Franz, M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Prob. Surg., 2001, 38(2), 72-140.
[36]
Strodtbeck, F. Physiology of wound healing. Newborn Infant Nurs. Rev., 2001, 1(1), 43-52.
[37]
Martin, P. Wound healing--aiming for perfect skin regeneration. Science, 1997, 276(5309), 75-81.
[38]
Woo, Y.C.; Park, S.S.; Subieta, A.R.; Brennan, T.J. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology, 2004, 101(2), 468-475.
[39]
Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 2003, 83(3), 835-870.
[40]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265-266.
[41]
Strbo, N.; Yin, N.; Stojadinovic, O. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv. Wound Care (New Rochelle), 2014, 3(7), 492-501.
[42]
Kaisho, T.; Akira, S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol., 2006, 117(5), 979-987.
[43]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[44]
Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Intl., 2013, 2013, 146764.
[45]
Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol., 2015, 15(11), 692-704.
[46]
Wilgus, T.A.; Roy, S.; McDaniel, J.C. Neutrophils and wound repair: Positive actions and negative reactions. Adv. Wound Care (New Rochelle), 2013, 2(7), 379-388.
[47]
Lipsky, P.E. Systemic lupus erythematosus: An autoimmune disease of B cell hyperactivity. Nat. Immunol., 2001, 2(9), 764-766.
[48]
Cowin, A.J.; Brosnan, M.P.; Holmes, T.M.; Ferguson, M.W. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev. Dyn., 1998, 212(3), 385-393.
[49]
Iwata, Y.; Yoshizaki, A.; Komura, K.; Shimizu, K.; Ogawa, F.; Hara, T.; Muroi, E.; Bae, S.; Takenaka, M.; Yukami, T.; Hasegawa, M.; Fujimoto, M.; Tomita, Y.; Tedder, T.F.; Sato, S. CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. Am. J. Pathol., 2009, 175(2), 649-660.
[50]
Gillitzer, R.; Goebeler, M. Chemokines in cutaneous wound healing. J. Leukoc. Biol., 2001, 69(4), 513-521.
[51]
Loots, M.A.; Lamme, E.N.; Zeegelaar, J.; Mekkes, J.R.; Bos, J.D.; Middelkoop, E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol., 1998, 111(5), 850-857.
[52]
Nosbaum, A.; Prevel, N.; Truong, H.A.; Mehta, P.; Ettinger, M.; Scharschmidt, T.C.; Ali, N.H.; Pauli, M.L.; Abbas, A.K.; Rosenblum, M.D. Cutting edge: Regulatory T cells facilitate cutaneous wound healing. J. Immunol., 2016, 196(5), 2010-2014.
[53]
Merad, M.; Ginhoux, F.; Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol., 2008, 8(12), 935-947.
[54]
Stojadinovic, O.; Yin, N.; Lehmann, J.; Pastar, I.; Kirsner, R.S.; Tomic-Canic, M. Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol. Res., 2013, 57(1-3), 222-228.
[55]
Gregorio, J.; Meller, S.; Conrad, C.; Di Nardo, A.; Homey, B.; Lauerma, A.; Arai, N.; Gallo, R.L.; Digiovanni, J.; Gilliet, M. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Experiment. Med., 2010, 207(13), 2921-2930.
[56]
Bauer, S.M.; Bauer, R.J.; Velazquez, O.C. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc. Endovascul Surg., 2005, 39(4), 293-306.
[57]
Arnold, F.; West, D.C. Angiogenesis in wound healing. Pharmacol. Ther., 1991, 52(3), 407-422.
[58]
Endrich, B.; Menger, M.D. Regeneration of the microcirculation during wound healing? Unfallchirurg, 2000, 103(11), 1006-1008.
[59]
Madden, J.W.; Peacock, E.E., Jr Studies on the biology of collagen during wound healing. 3. Dynamic metabolism of scar collagen and remodeling of dermal wounds. Ann. Surg., 1971, 174(3), 511-520.
[60]
Lau, K.; Paus, R.; Tiede, S.; Day, P.; Bayat, A. Exploring the role of stem cells in cutaneous wound healing. Exp. Dermatol., 2009, 18(11), 921-933.
[61]
Miller, S.J.; Burke, E.M.; Rader, M.D.; Coulombe, P.A.; Lavker, R.M. Re-epithelialization of porcine skin by the sweat apparatus. J. Invest. Dermatol., 1998, 110(1), 13-19.
[62]
Roh, C.; Lyle, S. Cutaneous stem cells and wound healing. Pediatr. Res., 2006, 59(4 Pt 2), 100R-103R.
[63]
Jacinto, A.; Martinez-Arias, A.; Martin, P. Mechanisms of epithelial fusion and repair. Nat. Cell Biol., 2001, 3(5), E117-E123.
[64]
Clark, R.A.; Lanigan, J.M.; DellaPelle, P.; Manseau, E.; Dvorak, H.F.; Colvin, R.B. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J. Invest. Dermatol., 1982, 79(5), 264-269.
[65]
Clark, R.A. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Dermatol., 1990, 94(6)(Suppl.), 128S-134S.
[66]
Li, J.; Zhang, Y.P.; Kirsner, R.S. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech., 2003, 60(1), 107-114.
[67]
Asahara, T.; Masuda, H.; Takahashi, T.; Kalka, C.; Pastore, C.; Silver, M.; Kearne, M.; Magner, M.; Isner, J.M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res., 1999, 85(3), 221-228.
[68]
Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen., 2009, 17(2), 153-162.
[69]
Hinz, B.; Phan, S.H.; Thannickal, V.J.; Galli, A.; Bochaton-Piallat, M.L.; Gabbiani, G. The myofibroblast: One function, multiple origins. Am. J. Pathol., 2007, 170(6), 1807-1816.
[70]
Gurtner, G.C.; Evans, G.R. Advances in head and neck reconstruction. Plast. Reconstr. Surg., 2000, 106(3), 672-682.
[71]
Tziotzios, C.; Profyris, C.; Sterling, J. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures. J. Am. Acad. Dermatol., 2012, 66(1), 13-24.
[72]
Profyris, C.; Tziotzios, C.; Do Vale, I. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation. J. Am. Acad. Dermatol., 2012, 66(1), 1-10.
[73]
Tandara, A.A.; Mustoe, T.A. Oxygen in wound healing--more than a nutrient. World J. Surg., 2004, 28(3), 294-300.
[74]
Mathieu, D.; Linke, J-C.; Wattel, F. Non-Healing Wounds; Handbook on Hyperbaric Med, 2006, pp. 401-427.
[75]
Woo, K.; Ayello, E.A.; Sibbald, R.G. The edge effect: current therapeutic options to advance the wound edge. Adv. Skin Wound Care, 2007, 20(2), 99-117.
[76]
Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 2007, 117(5), 1219-1222.
[77]
Gallagher, K.A.; Liu, Z.J.; Xiao, M.; Chen, H.; Goldstein, L.J.; Buerk, D.G.; Nedeau, A.; Thom, S.R.; Velazquez, O.C. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J. Clin. Invest., 2007, 117(5), 1249-1259.
[78]
Quattrini, C.; Jeziorska, M.; Boulton, A.J.; Malik, R.A. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes care, 2008, 31(1), 140-145.
[79]
Kirchner, L.M.; Meerbaum, S.O.; Gruber, B.S.; Knoll, A.K.; Bulgrin, J.; Taylor, R.A.; Schmidt, S.P. Effects of vascular endothelial growth factor on wound closure rates in the genetically diabetic mouse model. Wound Repair Regen., 2003, 11(2), 127-131.
[80]
Galiano, R.D.; Tepper, O.M.; Pelo, C.R.; Bhatt, K.A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H.G.; Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol., 2004, 164(6), 1935-1947.
[81]
Edwards, R.; Harding, K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis., 2004, 17(2), 91-96.
[82]
Bjarnsholt, T.; Kirketerp-Moller, K.; Jensen, P.O.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Hoiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen., 2008, 16(1), 2-10.
[83]
Menke, N.B.; Ward, K.R.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F. Impaired wound healing. Clin. Dermatol., 2007, 25(1), 19-25.
[84]
Godbout, J.P.; Glaser, R. Stress-induced immune dysregulation: Implications for wound healing, infectious disease and cancer. J. Neuroimmune Pharmacol., 2006, 1(4), 421-427.
[85]
Boyapati, L.; Wang, H.L. The role of stress in periodontal disease and wound healing. Periodontol. 2000, 2007, 44, 195-210.
[86]
Kiecolt-Glaser, J.K.; Marucha, P.T.; Malarkey, W.B.; Mercado, A.M.; Glaser, R. Slowing of wound healing by psychological stress. Lancet, 1995, 346(8984), 1194-1196.
[87]
Marucha, P.T.; Kiecolt-Glaser, J.K.; Favagehi, M. Mucosal wound healing is impaired by examination stress. Psychosomat. Med., 1998, 60(3), 362-365.
[88]
Galkowska, H.; Olszewski, W.L.; Wojewodzka, U.; Rosinski, G.; Karnafel, W. Neurogenic factors in the impaired healing of diabetic foot ulcers. J. Surg. Res., 2006, 134(2), 252-258.
[89]
Gary Sibbald, R.; Woo, K.Y. The biology of chronic foot ulcers in persons with diabetes. Diabetes Metabol. Res. Rev., 2008, 24(Suppl. 1), S25-S30.
[90]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B., 3rd Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[91]
Jankovic, A.; Ferreri, C.; Filipovic, M.; Ivanovic-Burmazovic, I.; Stancic, A.; Otasevic, V.; Korac, A.; Buzadzic, B.; Korac, B. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic. Res., 2016, 50(Suppl. 1), S51-S63.
[92]
Kowluru, R.A.; Atasi, L.; Ho, Y.S. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2006, 47(4), 1594-1599.
[93]
Pessoa, A.F.; Florim, J.C.; Rodrigues, H.G.; Andrade-Oliveira, V.; Teixeira, S.A.; Vitzel, K.F.; Curi, R.; Saraiva Camara, N.O.; Muscara, M.N.; Lamers, M.L.; Santos, M.F. Oral administration of antioxidants improves skin wound healing in diabetic mice. Wound Repair Regen., 2016, 24(6), 981-993.
[94]
Game, F.; Apelqvist, J.; Attinger, C.; Hartemann, A.; Hinchliffe, R.; Löndahl, M.; Price, P.E.; Jeffcoate, W. IWGDF guidance on use of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metabol. Res. Rev., 2016, 32(S1), 75-83.
[95]
Wong, M.W.; Leung, P.C.; Wong, W.C. Limb salvage in extensive diabetic foot ulceration-a preliminary clinical study using simple debridement and herbal drinks. Hong Kong Med. J., 2001, 7(4), 403-407.
[96]
Tam, J.C.; Ko, C.H.; Lau, K.M.; To, M.H.; Kwok, H.F.; Siu, W.S.; Lau, C.P.; Chan, W.Y.; Leung, P.C.; Fung, K.P.; Lau, C.B. Enumeration and functional investigation of endothelial progenitor cells in neovascularization of diabetic foot ulcer rats with a Chinese 2-herb formula. J. Diabetes, 2015, 7(5), 718-728.
[97]
Tam, J.C.; Ko, C.H.; Koon, C.M.; Cheng, Z.; Lok, W.H.; Lau, C.P.; Leung, P.C.; Fung, K.P.; Chan, W.Y.; Lau, C.B. Identification of target genes involved in wound healing angiogenesis of endothelial cells with the treatment of a chinese 2-herb formula. PLoS One, 2015, 10(10), e0139342.
[98]
Akkol, E.K.; Koca, U.; Peşin, I.; Yılmazer, D.; Toker, G.; Yeşilada, E. Exploring the wound healing activity of Arnebia densiflora (Nordm.) Ledeb. by in vivo models. J. Ethnopharmacol., 2009, 124(1), 137-141.
[99]
Sidhu, G.S.; Singh, A.K.; Banaudha, K.K.; Gaddipati, J.P.; Patnaik, G.K.; Maheshwari, R.K. Arnebin-1 Accelerates Normal and Hydrocortisone- Induced Impaired Wound Healing. J. Investigat. Dermatol., 113(5), 773-781.
[100]
Zeng, Z.; Zhu, B.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J. Ethnopharmacol., 2014, 154(3), 653-662.
[101]
Zeng, Z.; Huang, W.D.; Gao, Q.; Su, M.L.; Yang, Y.F.; Liu, Z.C.; Zhu, B.H. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1alpha expression through the PI3K-dependent pathway. Intl. J. Mol. Med., 2015, 36(3), 685-697.
[102]
Jin, S.; Zhang, M.; Gao, Y.; Zhang, X.; Cui, G.; Zhang, Y. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J. Diabetes Res., 2014, 2014, 259412.
[103]
Sun, Y.H.; Yu, D.N.; Chen, X.; Hu, X.H.; Zhang, G.A.; Yan, R.Y.; Tan, F.J. Preliminary study on the improvement of wound microcirculation and retrospection on several methods of the management of deep partial thickness burn wound. Zhonghua Shao Shang Za Zhi, 2005, 21(1), 17-20.
[104]
Nilforoushzadeh, M.A.; Javanmard, S.H.; Ghanadian, M.; Asghari, G.; Jaffary, F.; Yakhdani, A.F.; Dana, N.; Fatemi, S.A. The Effects of adiantum capillus-veneris on wound healing: An experimental in vitro evaluation. Intl. J. Prev. Med., 2014, 5(10), 1261-1268.
[105]
Fraternale, D.; Sosa, S.; Ricci, D.; Genovese, S.; Messina, F.; Tomasini, S.; Montanari, F.; Marcotullio, M.C. Anti-inflammatory, antioxidant and antifungal furanosesquiterpenoids isolated from Commiphora erythraea (Ehrenb.) Engl. resin. Fitoterapia, 2011, 82(4), 654-661.
[106]
Atiba, A.; Ueno, H.; Uzuka, Y. The effect of aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J. Vet. Med. Sci., 2011, 73(5), 583-589.
[107]
Nayak, B.S.; Isitor, G.; Davis, E.M.; Pillai, G.K. The evidence based wound healing activity of Lawsonia inermis Linn. Phytother. Res., 2007, 21(9), 827-831.
[108]
Mikhaeil, B.R.; Badria, F.A.; Maatooq, G.T.; Amer, M.M. Antioxidant and immunomodulatory constituents of henna leaves. Z. Naturforsch. C, 2004, 59(7-8), 468-476.
[109]
Galehdari, H.; Negahdari, S.; Kesmati, M.; Rezaie, A.; Shariati, G. Effect of the herbal mixture composed of Aloe Vera, Henna, Adiantum capillus-veneris, and Myrrha on wound healing in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2016, 16(1), 386.
[110]
Haffor, A.S. Effect of Commiphora molmol on leukocytes proliferation in relation to histological alterations before and during healing from injury. Saudi J. Biol. Sci., 2010, 17(2), 139-146.
[111]
Haffor, A.S. Effect of myrrh (Commiphora molmol) on leukocyte levels before and during healing from gastric ulcer or skin injury. J. Immunotoxicol., 2010, 7(1), 68-75.
[112]
Gebrehiwot, M.; Asres, K.; Bisrat, D.; Mazumder, A.; Lindemann, P.; Bucar, F. Evaluation of the wound healing property of Commiphora guidottii Chiov. ex. Guid. BMC Complement. Altern. Med., 2015, 15, 282.
[113]
Wang, X.W.; Yu, Y.; Gu, L. Dehydroabietic acid reverses TNF-alpha-induced the activation of FOXO1 and suppression of TGF-beta1/Smad signaling in human adult dermal fibroblasts. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8616-8626.
[114]
Daburkar, M.; Lohar, V.; Rathore, A.S.; Bhutada, P.; Tangadpaliwar, S. An in vivo and in vitro investigation of the effect of Aloe vera gel ethanolic extract using animal model with diabetic foot ulcer. J. Pharm. Bioallied Sci., 2014, 6(3), 205-212.
[115]
Inpanya, P.; Faikrua, A.; Ounaroon, A.; Sittichokechaiwut, A.; Viyoch, J. Effects of the blended fibroin/aloe gel film on wound healing in streptozotocin-induced diabetic rats. Biomed. Mater., 2012, 7(3), 035008.
[116]
Abdullah, K.M.; Abdullah, A.; Johnson, M.L.; Bilski, J.J.; Petry, K.; Redmer, D.A.; Reynolds, L.P.; Grazul-Bilska, A.T. Effects of Aloe vera on gap junctional intercellular communication and proliferation of human diabetic and nondiabetic skin fibroblasts. J. Altern. Complement. Med., 2003, 9(5), 711-718.
[117]
Chithra, P.; Sajithlal, G.B.; Chandrakasan, G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J. Ethnopharmacol., 1998, 59(3), 195-201.
[118]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[119]
Dashtdar, M.; Dashtdar, M.R.; Dashtdar, B.; Khan, G.A.; Kardi, K. Phenol-Rich compounds sweet gel: A statistically more effective antibiotic than cloxacillin against pseudomonas aeruginosa. J. Pharmacopuncture, 2016, 19(3), 246-252.
[120]
Dashtdar, M.; Dashtdar, M.R.; Dashtdar, B.; Shirazi, M.K.; Khan, S.A. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria. J. Pharmacopuncture, 2013, 16(2), 15-22.
[121]
Arias, M.E.; Gomez, J.D.; Cudmani, N.M.; Vattuone, M.A.; Isla, M.I. Antibacterial activity of ethanolic and aqueous extracts of Acacia aroma Gill. ex Hook et Arn. Life Sci., 2004, 75(2), 191-202.
[122]
Ho, T.J.; Jiang, S.J.; Lin, G.H.; Li, T.S.; Yiin, L.M.; Yang, J.S.; Hsieh, M.C.; Wu, C.C.; Lin, J.G.; Chen, H.P. The In Vitro and In Vivo wound healing properties of the chinese herbal medicine “Jinchuang Ointment”. Evid. Based Complement. Alternat. Med., 2016, 2016, 1654056.
[123]
Namjoyan, F.; Kiashi, F.; Moosavi, Z.B.; Saffari, F.; Makhmalzadeh, B.S. Efficacy of Dragon’s blood cream on wound healing: A randomized, double-blind, placebo-controlled clinical trial. J. Tradit. Complement. Med., 2016, 6(1), 37-40.
[124]
Wan, Y.; Yang, Y.J.; Li, Y.S.; Li, X.J.; Zhang, W.; Liu, M.; Tang, H.B. Effects of San-huang-sheng-fu oil on peripheral circulatory disorders and foot ulcers in diabetic rats and the mechanisms. Zhonghua Shao Shang Za Zhi, 2016, 32(3), 168-175.
[125]
Jia, M.M.; Li, Y.S.; Pei, L.J.; Liu, M.; Li, X.J.; Tang, H.B. Effect of San-huang-sheng-fu oil on wounds of full-thickness scald in rabbits. Zhonghua Shao Shang Za Zhi, 2013, 29(1), 50-54.
[126]
Lu, L.L.; Wan, P.; Li, L.Z.; Zhao, M.J.; Hu, J.Y.; Zhao, Y.F. Experimental study on topical treatment of diabetic skin ulcers with yi medicine “yi bu a jie” extract. Chin. J. Integr. Med., 2013, 19(6), 464-467.
[127]
Lau, K.M.; Lai, K.K.; Liu, C.L.; Tam, J.C.; To, M.H.; Kwok, H.F.; Lau, C.P.; Ko, C.H.; Leung, P.C.; Fung, K.P.; Poon, S.K.; Lau, C.B. Synergistic interaction between Astragali Radix and Rehmanniae Radix in a Chinese herbal formula to promote diabetic wound healing. J. Ethnopharmacol., 2012, 141(1), 250-256.
[128]
Zhang, R.X.; Li, M.X.; Jia, Z.P. Rehmannia glutinosa: review of botany, chemistry and pharmacology. J. Ethnopharmacol., 2008, 117(2), 199-214.
[129]
Zhang, Q.; Fong, C.C.; Yu, W.K.; Chen, Y.; Wei, F.; Koon, C.M.; Lau, K.M.; Leung, P.C.; Lau, C.B.; Fung, K.P.; Yang, M. Herbal formula Astragali Radix and Rehmanniae Radix exerted wound healing effect on human skin fibroblast cell line Hs27 via the activation of transformation growth factor (TGF-beta) pathway and promoting extracellular matrix (ECM) deposition. Phytomedicine, 2012, 20(1), 9-16.
[130]
Lau, T.W.; Lam, F.F.; Lau, K.M.; Chan, Y.W.; Lee, K.M.; Sahota, D.S.; Ho, Y.Y.; Fung, K.P.; Leung, P.C.; Lau, C.B. Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer. J. Ethnopharmacol., 2009, 123(1), 155-162.
[131]
Li, F.L.; Li, B.; Wang, Z.Y.; Fan, B.; Xu, W.B.; Xu, R. Effects of resolving stagnation and promoting granulation therapy on expressions of Bax and Bcl-2 in granulation tissue of diabetic rats during wound healing. Zhong Xi Yi Jie He Xue Bao., 2007, 5(6), 661-664.
[132]
Lau, T.W.; Sahota, D.S.; Lau, C.H.; Chan, C.M.; Lam, F.C.; Ho, Y.Y.; Fung, K.P.; Lau, C.B.; Leung, P.C. An in vivo investigation on the wound-healing effect of two medicinal herbs using an animal model with foot ulcer. Eur. Surg. Res., 2008, 41(1), 15-23.
[133]
Wang, Y.F.; Que, H.F. Effects of Chinese herbal medicine Yiqi Huayu formula on substance P expression in skin ulcers of rats with diabetes mellitus. Zhong Xi Yi Jie He Xue Bao., 2011, 9(12), 1367-1372.
[134]
Li, S.F.; Zhao, J.Y.; Liu, J.P. Effect of tangzu yuyang ointment on the outcome event of patients with chronic diabetic foot ulcers. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2011, 31(6), 775-779.
[135]
Li, S.; Zhao, J.; Liu, J.; Xiang, F.; Lu, D.; Liu, B.; Xu, J.; Zhang, H.; Zhang, Q.; Li, X.; Yu, R.; Chen, M.; Wang, X.; Wang, Y.; Chen, B. Prospective randomized controlled study of a Chinese herbal medicine compound Tangzu Yuyang Ointment for chronic diabetic foot ulcers: a preliminary report. J. Ethnopharmacol., 2011, 133(2), 543-550.
[136]
Gupta, A.; Upadhyay, N.K.; Sawhney, R.C.; Kumar, R. A poly-herbal formulation accelerates normal and impaired diabetic wound healing. Wound Repair Regen., 2008, 16(6), 784-790.
[137]
Wang, Y.F.; Li, X.; Xu, R.; Jiang, W.C.; Li, F.L.; Ze, K.; Li, B. Effect of Shengji Huayu Recipe on the expression of MMP-3 and TIMP-1 in skin ulcer tissue of diabetic rats. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2014, 34(2), 218-223.
[138]
Li, B.; Wang, Z.Y.; Xiao, X.L.; Li, F.L.; Fan, B. Effects of Shengji Huayu Recipe and its decomposed formulas on synthesis of collagen types I and III in granulation tissue of rats in early wound healing. Zhong Xi Yi Jie He Xue Bao., 2005, 3(3), 216-219.
[139]
Dong, L.; Li, B.; Zhang, Y. Effect of shengji huayu recipe and its disassembled formulae on type I and III collagen synthesis in wound healing fibroblasts. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2002, 22(3), 200-202.
[140]
Zhao, H.; Mortezaei, R.; Wang, Y.; Sheng, X.; Aria, F.; Bojanowski, K. SBD.4 stimulates regenerative processes in vitro, and wound healing in genetically diabetic mice and in human skin/severe-combined immunodeficiency mouse chimera. Wound Repair Regen., 2006, 14(5), 593-601.
[141]
Zhao, H.; Deneau, J.; Che, G.O.; Li, S.; Vagnini, F.; Azadi, P.; Sonon, R.; Ramjit, R.; Lee, S.M.; Bojanowski, K. Angelica sinensis isolate SBD.4: composition, gene expression profiling, mechanism of action and effect on wounds, in rats and humans. Eur. J. Dermatol., 2012, 22(1), 58-67.
[142]
Sakaguchi, I.; Tsujimura, M.; Ikeda, N.; Minamino, M.; Kato, Y.; Watabe, K.; Yano, I.; Kaneda, K. Granulomatous tissue formation of shikon and shikonin by air pouch method. Biol. Pharmaceut. Bull., 2001, 24(6), 650-655.
[143]
Fujita, N.; Sakaguchi, I.; Kobayashi, H.; Ikeda, N.; Kato, Y.; Minamino, M.; Ishii, M. An extract of the root of Lithospermun erythrorhison accelerates wound healing in diabetic mice. Biol. Pharm. Bull., 2003, 26(3), 329-335.
[144]
Leung, P.C.; Wong, M.W.; Wong, W.C. Limb salvage in extensive diabetic foot ulceration: an extended study using a herbal supplement. Hong Kong Med. J., 2008, 14(1), 29-33.
[145]
Piskin, A.; Altunkaynak, B.Z.; Tumentemur, G.; Kaplan, S.; Yazici, O.B.; Hokelek, M. The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin. J. Dermatol. Treat., 2014, 25(4), 350-357.
[146]
Teoh, S.L.; Latiff, A.A.; Das, S. The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin. Clin. Exp. Dermatol., 2009, 34(7), 815-822.
[147]
Hussan, F.; Teoh, S.L.; Muhamad, N.; Mazlan, M.; Latiff, A.A. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-beta expression. J. Wound Care, 2014, 23(8), 400-402, 404-407.