[3]
Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27, 305-318.
[4]
Bhargava, P.; Singh, R. Developments in diagnosis and antileishmanial drugs. Interdiscip. Perspect. Infect. Dis., 2012, 2012626838
[5]
Cupolillo, E.; Brahim, L.R.; Toaldo, C.B.; De Oliveira-Neto, M.P.; De Brito, M.E.; Falqueto, A.; De Farias Naiff, M.; Grimaldi, G., Jr Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J. Clin. Microbiol., 2003, 41, 3126-3132.
[7]
Handman, E. Leishmaniasis: Current status of vaccine development. Clin. Microbiol. Rev., 2001, 14, 229-243.
[8]
Peters, W.; Evans, D.A.; Lanham, S.M. Importance of parasite identification in cases of leishmaniasis. J. R. Soc. Med., 1983, 76, 540-542.
[9]
Prasad, L.S. Kala azar. Indian J. Pediatr., 1999, 66, 539-546.
[10]
Danesh-Bahreini, M.A.; Shokri, J.; Samiei, A.; Kamali-Sarvestani, E.; Barzegar-Jalali, M.; Mohammadi-Samani, S. Nanovaccine for leishmaniasis: Preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int. J. Nanomedicine, 2011, 6, 835-842.
[11]
Gutierrez, V.; Seabra, A.B.; Reguera, R.M.; Khandare, J.; Calderon, M. New approaches from nanomedicine for treating leishmaniasis. Chem. Soc. Rev., 2016, 45, 152-168.
[12]
Rees, P.H.; Kager, P.A.; Wellde, B.T.; Hockmeyer, W.T. The response of Kenyan kala-azar to treatment with sodium stibogluconate. Am. J. Trop. Med. Hyg., 1984, 33, 357-361.
[13]
Salotra, P.; Singh, R. Challenges in the diagnosis of post kala-azar dermal leishmaniasis. Indian J. Med. Res., 2006, 123, 295-310.
[14]
Reyburn, H.; Rowland, M.; Mohsen, M.; Khan, B.; Davies, C. The prolonged epidemic of anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: ‘Bringing down the neighbourhood’. Trans. R. Soc. Trop. Med. Hyg., 2003, 97, 170-176.
[15]
Goto, H.; Lindoso, J.A. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev. Anti Infect. Ther., 2010, 8, 419-433.
[16]
Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis., 2007, 7, 581-596.
[17]
Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int., 2011, 2011571242
[18]
Tiwari, N.; Gedda, M.R.; Tiwari, V.K.; Singh, S.P.; Singh, R.K. Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Rev. Med. Chem., 2018, 18, 26-41.
[19]
Singh, O.P.; Singh, B.; Chakravarty, J.; Sundar, S. Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infect. Dis. Poverty, 2016, 5, 19.
[20]
Mukherjee, A.; Padmanabhan, P.K.; Sahani, M.H.; Barrett, M.P.; Madhubala, R. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol. Biochem. Parasitol., 2006, 145, 1-10.
[21]
Sundar, S.; Singh, A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther. Adv. Infect. Dis., 2016, 3, 98-109.
[22]
Freitas-Junior, L.H.; Chatelain, E.; Kim, H.A.; Siqueira-Neto, J.L. Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? Int. J. Parasitol. Drugs Drug Resist., 2012, 2, 11-19.
[23]
Sundar, S.; Singh, A.; Chakravarty, J.; Rai, M. Efficacy and safety of miltefosine in treatment of post-kala-azar dermal leishmaniasis. ScientificWorldJournal, 2015, 2015414378
[24]
Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67, 2576-2597.
[25]
Marinho, F.A.; Goncalves, K.C.; Oliveira, S.S.; Oliveira, A.C.; Bellio, M.; d’Avila-Levy, C.M.; Santos, A.L.; Branquinha, M.H. Miltefosine induces programmed cell death in leishmania amazonensis promastigotes. Mem. Inst. Oswaldo Cruz, 2011, 106, 507-519.
[26]
Mishra, J.; Singh, S. Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Exp. Parasitol., 2013, 135, 397-406.
[27]
Chawla, B.; Jhingran, A.; Panigrahi, A.; Stuart, K.D.; Madhubala, R. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One, 2011, 6e26660
[28]
Hendrickx, S.; Mondelaers, A.; Eberhardt, E.; Delputte, P.; Cos, P.; Maes, L. In vivo selection of paromomycin and miltefosine resistance in Leishmania donovani and L. infantum in a Syrian hamster model. Antimicrob. Agents Chemother., 2015, 59, 4714-4718.
[29]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86, 215-223.
[30]
Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64, 505-519.
[31]
Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7, 3-9.
[32]
Hua, S.; De Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[33]
Gowda, R.; Kardos, G.; Sharma, A.; Singh, S.; Robertson, G.P. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol. Cancer Ther., 2017, 16, 440-452.
[34]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro, 2013, 27, 1896-1904.
[35]
Sabella, S.; Carney, R.P.; Brunetti, V.; Malvindi, M.A.; Al-Juffali, N.; Vecchio, G.; Janes, S.M.; Bakr, O.M.; Cingolani, R.; Stellacci, F.; Pompa, P.P. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 2014, 6, 7052-7061.
[36]
Singh, S.; Sharma, A.; Robertson, G.P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res., 2012, 72, 5663-5668.
[37]
Jain, K.; Jain, N.K. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov. Today, 2013, 18, 1272-1281.
[38]
Veerareddy, P.R.; Vobalaboina, V.; Ali, N. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J. Drug Target., 2009, 17, 140-147.
[39]
Italia, J.L.; Yahya, M.M.; Singh, D.; Ravi Kumar, M.N. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm. Res., 2009, 26, 1324-1331.
[40]
Nahar, M.; Jain, N.K. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm. Res., 2009, 26, 2588-2598.
[41]
Singodia, D.; Khare, P.; Dube, A.; Talegaonkar, S.; Khar, R.K.; Mishra, P.R. Development and performance evaluation of alginate-capped amphotericin B lipid nanoconstructs against visceral leishmaniasis. J. Biomed. Nanotechnol., 2011, 7, 123-124.
[42]
Italia, J.L.; Kumar, M.N.; Carter, K.C. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. J. Biomed. Nanotechnol., 2012, 8, 695-702.
[43]
Kansal, S.; Tandon, R.; Dwivedi, P.; Misra, P.; Verma, P.R.; Dube, A.; Mishra, P.R. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: A system for intervention in visceral leishmaniasis. J. Antimicrob. Chemother., 2012, 67, 2650-2660.
[44]
Asthana, S.; Jaiswal, A.K.; Gupta, P.K.; Pawar, V.K.; Dube, A.; Chourasia, M.K. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob. Agents Chemother., 2013, 57, 1714-1722.
[45]
De Carvalho, R.F.; Ribeiro, I.F.; Miranda-Vilela, A.L.; De Souza Filho, J.; Martins, O.P.; Cintra e Silva Dde, O.; Tedesco, A.C.; Lacava, Z.G.; Bao, S.N.; Sampaio, R.N. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 2013, 135, 217-222.
[46]
Ribeiro, T.G.; Chavez-Fumagalli, M.A.; Valadares, D.G.; Franca, J.R.; Rodrigues, L.B.; Duarte, M.C.; Lage, P.S.; Andrade, P.H.; Lage, D.P.; Arruda, L.V.; Abanades, D.R.; Costa, L.E.; Martins, V.T.; Tavares, C.A.; Castilho, R.O.; Coelho, E.A.; Faraco, A.A. Novel targeting using nanoparticles: An approach to the development of an effective anti-leishmanial drug-delivery system. Int. J. Nanomedicine, 2014, 9, 877-890.
[47]
Jain, V.; Gupta, A.; Pawar, V.K.; Asthana, S.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl. Biochem. Biotechnol., 2014, 174, 1309-1330.
[48]
Gupta, P.K.; Jaiswal, A.K.; Asthana, S.; Verma, A.; Kumar, V.; Shukla, P.; Dwivedi, P.; Dube, A.; Mishra, P.R. Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: Applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis. Pharm. Res., 2015, 32, 1727-1740.
[49]
Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine, 2015, 11, 705-713.
[50]
Asthana, S.; Gupta, P.K.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Overexpressed macrophage mannose receptor targeted nanocapsules- mediated cargo delivery approach for eradication of resident parasite: In vitro and in vivo studies. Pharm. Res., 2015, 32, 2663-2677.
[51]
Barros, D.; Costa Lima, S.A.; Cordeiro-da-Silva, A. Surface functionalization of polymeric nanospheres modulates macrophage activation: Relevance in leishmaniasis therapy. Nanomedicine (Lond.), 2015, 10, 387-403.
[52]
Asthana, S.; Gupta, P.K.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: In vitro and in vivo studies. Nanomedicine (Lond.), 2015, 10, 1093-1109.
[53]
Want, M.Y.; Islamuddin, M.; Chouhan, G.; Ozbak, H.A.; Hemeg, H.A.; Dasgupta, A.K.; Chattopadhyay, A.P.; Afrin, F. Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf. B Biointerfaces, 2015, 130, 215-221.
[54]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 59, 748-753.
[55]
Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Rafati, S. Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl. Microbiol. Biotechnol., 2016, 100, 7051-7060.
[56]
Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Badirzadeh, A.; Rafati, S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol., 2016, 38, 599-608.
[57]
Chaurasia, M.; Singh, P.K.; Jaiswal, A.K.; Kumar, A.; Pawar, V.K.; Dube, A.; Paliwal, S.K.; Chourasia, M.K. Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Pharm. Res., 2016, 33, 2617-2629.
[58]
Da Gama Bitencourt, J.J.; Pazin, W.M.; Ito, A.S.; Barioni, M.B.; De Paula Pinto, C.; Santos, M.A.; Guimaraes, T.H.; Santos, M.R.; Valduga, C.J. Miltefosine-loaded lipid nanoparticles: Improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophys. Chem., 2016, 217, 20-31.
[59]
Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic coglycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected Visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970.
[60]
Das, S.; Ghosh, S.; De, A.K.; Bera, T. Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: Development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. Int. J. Biol. Macromol., 2017, 102, 996-1008.
[61]
Biswaro, L.S.; Garcia, M.P.; da Silva, J.R.; Neira Fuentes, L.F.; Vera, A.; Escobar, P.; Azevedo, R.B. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis. J. Biomed. Mater. Res. B Appl. Biomater., 2018. [epub ahead of print].
[62]
Mehrizi, T.Z.; Ardestani, M.S.; Khamesipour, A.; Hoseini, M.H.M.; Mosaffa, N.; Anissian, A.; Ramezani, A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J. Mater. Sci. Mater. Med., 2018, 29, 125.
[63]
Prajapati, V.K.; Awasthi, K.; Gautam, S.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J. Antimicrob. Chemother., 2011, 66, 874-879.
[64]
Saudagar, P.; Dubey, V.K. Carbon nanotube based betulin formulation shows better efficacy against Leishmania parasite. Parasitol. Int., 2014, 63, 772-776.
[65]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine, 2011, 6, 2705-2714.
[66]
Soflaei, S.; Dalimi, A.; Ghaffarifar, F.; Shakibaie, M.; Shahverdi, A.R.; Shafiepour, M. In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on leishmania infantum. J. Parasitol. Res., 2012, 2012756568
[67]
Nadhman, A.; Nazir, S.; Khan, M.I.; Arooj, S.; Bakhtiar, M.; Shahnaz, G.; Yasinzai, M. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic. Biol. Med., 2014, 77, 230-238.
[68]
Ahmad, A.; Wei, Y.; Syed, F.; Khan, S.; Khan, G.M.; Tahir, K.; Khan, A.U.; Raza, M.; Khan, F.U.; Yuan, Q. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. J. Photochem. Photobiol. B, 2016, 161, 17-24.
[69]
Tiwari, B.; Pahuja, R.; Kumar, P.; Rath, S.K.; Gupta, K.C.; Goyal, N. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob. Agents Chemother., 2017, 61 pii: e01169-e16.
[70]
Firouzmand, H.; Sahranavard, M.; Badiee, A.; Khamesipour, A.; Alavizadeh, S.H.; Samiei, A.; Soroush, D.; Tavassoti Kheiri, M.; Mahboudi, F.; Jaafari, M.R. The role of LPD-nanoparticles containing recombinant major surface glycoprotein of Leishmania (rgp63) in protection against leishmaniasis in murine model. Immunopharmacol. Immunotoxicol., 2018, 40, 72-82.
[71]
Santos, D.M.; Carneiro, M.W.; de Moura, T.R.; Fukutani, K.; Clarencio, J.; Soto, M.; Espuelas, S.; Brodskyn, C.; Barral, A.; Barral-Netto, M.; De Oliveira, C.I. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int. J. Nanomedicine, 2012, 7, 2115-2127.
[72]
Margaroni, M.; Agallou, M.; Athanasiou, E.; Kammona, O.; Kiparissides, C.; Gaitanaki, C.; Karagouni, E. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFalpha-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int. J. Nanomedicine, 2017, 12, 6169-6184.
[73]
Tabatabaie, F.; Samarghandi, N.; Zarrati, S.; Maleki, F.; Ardestani, M.S.; Elmi, T.; Mosawi, S.H. Induction of immune responses by DNA vaccines formulated with dendrimer and poly (Methyl Methacrylate) (PMMA) nano-adjuvants in BALB/c mice infected with leishmania major. Open Access Maced. J. Med. Sci., 2018, 6, 229-236.