Abstract
Background: Glancing Angle Deposition (GLAD) provides oblique deposition and substrate motion to engineer thin film microstructures in three dimensions on nano scale. Using this technique zigzag, chevrons, staircase, post, helical and various type of nanostructures including 3-D multilayers can be obtained from various metals with controllable morphologies. The aim of the study is to increase surface porosity and junction using GLAD method area for thin film solar cells and therefore to increase p-n junction area. This provides efficient charge separation and strong light absorption.
Methods: Glancing angle deposition using e-beam evaporation technique has been employed to create 3- D silicon nano-structures on the surface. Al and Ag contact layers were deposited by thermal evaporation technique. Hole-conductor polymer PEDOT: PSS was spin coated onto n type silicon thin film. Reflectance spectra were measured using UV-VIS spectroscopy. Scanning electron microscopy was used to image surface and cross-section with and without PEDOT: PSS. Also, transmission spectra of PEDOT: PSS was measured using UV-VIS spectroscopy. Surface wettability properties and contact angles of silicon samples were measured by contact angle measurement with water.
Results: Columnar structures possess less reflection compared to the flat surface depending on surface porosity. This phenomenon shows that these structures can be used as anti-reflection coatings for solar cells and optical devices to decrease reflectivity and increase light harvesting with higher efficiency. Contact angle decreases when surface roughness increases therefore we can see that columnar structures are more hydrophilic compared to dense films. Flat silicon has 98° contact angle while columnar structures have 71° and 61°. PEDOT: PSS exhibits high transparency in the range from 200 to 1100 nm of wavelength of light, which resembles to solar radiation inside the atmosphere. Also, SEM images of the samples show that silicon columnar structures form better contact with PEDOT: PSS than flat surface.
Conclusion: GLAD technique has been used to achieve homogenous rough surface by e-beam evaporation. Both cross-sectional and top-view SEM images show that columnar structures have higher porosity than flat surfaces. The response of UV-VIS spectroscopy shows that columnar structures have less reflection due to highly porous surface. With increasing incident flux angle, antireflection property of the surfaces was enhanced by surpassing the surface reflection. Due to the reduced hydrophobicity of porous structures, organic polymer can be distributed homogenously in between the columnar structures with increased p-n junction interface area. PEDOT: PSS is highly conductive, and it is highly transparent material in the range of the wavelength typically seen in the solar radiation. This makes it easier for light to reach to Si interface to generate electrons and holes. These results provide better understanding of Si- based heterojunction solar cells efficiency improvement with surface modification. This study also shows dependency of optical and electrical activity to surface geometry and surface porosity.
Keywords: Structured Thin Films (STFs), photovoltaics, Scanning Electron Microscopy (SEM), Glancing Angle Deposition (GLAD), thin film microstructures, Sculptured Thin Films (STF).
Graphical Abstract