[1]
Vaupel, P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist, 2008, 13, 21-26.
[2]
Challapalli, A.; Carroll, L.; Aboagye, E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging, 2017, 5, 225-253.
[3]
Hammond, E.M.; Asselin, M.C.; Forster, D.; O’Connor, J.P.B.; Senra, J.M.; Williams, K.J. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin. Oncol., 2014, 26, 277-288.
[4]
Krohn, K.A.; Link, J.M.; Mason, R.P. Molecular imaging of hypoxia. J. Nucl. Med., 2008, 49, 129S-148S.
[5]
Colliez, F.; Gallez, B.; Jordan, B.F. Assessing tumor oxygenation for predicting outcome in radiation oncology: A review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Front. Oncol., 2017, 7, 1-16.
[6]
Adams, G.E.; Cooke, M.S. Electron-affinic Sensitization. 1. A structural basis for chemical radiosensitization in bacteria. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1969, 15, 457-471.
[7]
Nunn, A.; Linder, K.; Strauss, W.H. Nitroimidazoles and imaging hypoxia. Europ. J. Nucl. Med., 1995, 22, 265-280.
[8]
Wiebe, L.I.; McEwan, A.J.B. Scintigraphic imaging of focal hypoxic tissue: development and clinical applications of 123I-IAZA. Brazil. Arch. Biol. Technol., 2002, 45, S89-S102.
[9]
Rajendran, J.G.; Krohn, K.A. F18 Fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin. Nucl. Med., 2015, 45, 151-162.
[10]
Ricardo, C.L.; Kumar, P.; Wiebe, L.I. Bifunctional metal - nitroimidazole complexes for hypoxia theranosis in cancer. J. Diag. Imag Ther., 2015, 2, 103-158.
[11]
Kumar, P.; Bacchu, V.; Wiebe, L.I. The chemistry and radiochemistry of hypoxia-specific, radiohalogenated nitroaromatic imaging probes. Sem. Nucl. Med., 2015, 45, 122-135.
[12]
Savi, A.; Incerti, E.; Fallanca, F.; Bettinardi, V.; Rossetti, F.; Monterisi, C.; Compierchio, A.; Negri, G.; Zannini, P.; Gianolli, L.; Picchio, M. First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J. Nucl. Med., 2017, 58, 1224-1229.
[13]
Melsens, E.; De Vlieghere, E.; Descamps, B.; Vanhove, C.; Kersemans, K.; De Vos, F.; Goethals, I.; Brans, B.; De Wever, O.; Ceelen, W.; Pattyn, P. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat. Oncol., 2018, 13, 39.
[14]
Servagi-Vernat, S.; Differding, S.; Hanin, F.X.; Labar, D.; Bol, A.; Lee, J.A.; Grégoire, V. A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 1544-1552.
[15]
Mortensen, L.S.; Johansen, J.; Kallehauge, J.; Primdahl, H.; Busk, M.; Lassen, P.; Alsner, J.; Sørensen’, B.S.; Toustrup, K.; Jakobsen, S.; Petersen, J.; Petersen, H.; Theila, J.; Nordsmark, M.; Overgaard, J. PET imaging of hypoxia: FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: Results from the DAHANCA 24 trial. Radiother. Oncol., 2012, 105, 14-20.
[16]
Beck, R.; Röper, B.; Carlsen, J.M.; Huisman, M.C.; Lebschi, J.A.; Andratschke, N.; Picchio, M.; Souvatzoglou, M.; Machulla, H-J.; Piert, M. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J. Nucl. Med., 2007, 48, 973-980.
[17]
Grosu, A.; Souvatzoglou, M.; Röper, B.; Dobritz, M.; Wiedenmann, N.; Jacob, V.; Wester, H-J.; Reischl, G.; Machulla, H-J.; Schwaiger, M.; Molls, M.; Piert, M. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys., 2007, 69, 541-551.
[18]
Reischl, G.; Ehrlichmann, W.; Bieg, C.; Kumar, P.; Wiebe, L.I.; Machulla, H-J. Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl. Radiat. Isotopes., 2005, 62, 897-901.
[19]
Kumar, P.; Ortlieb, R.K.; Gupta, A.; Wiebe, L.I. Microwave-assisted radiosynthesis of the hypoxia marker 1-α-D-(5-deoxy-5-[18F]fluoroarabinofuranosyl)-2-nitroimidazole ([18F]FAZA). Curr. Radiopharm., 2014, 7, 49-56.
[20]
Bouvet, V.R.; Wuest, M.; Wiebe, L.I. Wuest, F. Synthesis of hypoxia imaging agent 1-(5-deoxy-5-fluoro-α-D-arabinofuranosyl)-2-nitroimidazole [18F]FAZA using microfluidic technology. Nucl. Med. Biol., 2011, 38, 235-245.
[21]
Hayashi, K.; Furutsuka, K.; Takei, M.; Muto, M.; Nakao, R.; Aki, H.; Suzuki, K.; Fukumura, T. High-yield automated synthesis of [18F]fluoroazomycin arabinoside ([18F]FAZA) for hypoxia-specific tumor imaging. Appl. Radiat. Isotopes., 2011, 69, 1007-1013.
[22]
Kumar, P.; Emami, S.; McEwan, A.J.B.; Wiebe, L.I. Development of an economical, single step synthesis of FAZA, a clinical hypoxia marker, and potential synthons to prepare its positional analogues. Lett. Drug Design Develop., 2009, 6, 82-85.
[23]
Jacobson, O.; Chen, X. PET designated fluoride-18 production and chemistry. Curr. Top. Med. Chem., 2010, 10, 1048-1059.
[24]
Coenen, H.H. Fluorine-18 labeling methods: features and possibilities of basic reactions. Ernst Schering Res. Found. Workshop, 2007, 15-50.
[25]
Zhang, M.R.; Suzuki, K. [18F]Fluoroalkyl agents: Synthesis, reactivity and application for development of PET ligands in molecular imaging. Curr. Top. Med. Chem., 2007, 7, 1817-1828.
[26]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26, 1-18.
[27]
Liu, J.; Barrio, J.R.; Satyamurthy, N. Efficient synthesis of 9-(4-[18F]fluoro-3-hydroxymethyl-butyl)guanine ([18F]FHBG) and 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG). J. Fluorine . Chem., 2017, 201, 24-42.
[28]
Suehiro, M.; Vallabhajosula, S.; Goldsmith, S.J.; Ballon, D.J. Investigation of the role of the base in the synthesis of [18F]FLT. Appl. Radiat. Isotopes., 2007, 65, 1350-1358.
[29]
Mannan, R.H.; Somayaji, V.V.; Lee, J.; Mercer, J.R.; Chapman, J.D.; Wiebe, L.I. Radioiodinated 1-(5-iodo-5-deoxy-β‑D‑arabinofuranosyl)‑2‑nitroimidazole (iodoazomycin arabinoside: IAZA), a novel marker of tissue hypoxia. J. Nucl. Med., 1991, 32, 1764-1770.
[30]
Lee, H.C.; Kumar, P.; McEwan, A.J.; Wiebe, L.I.; Mercer, J.R. Synthesis, radiolabeling, and biodistribution of putative metabolites of iodoazomycin arabinoside. Nucl. Med. Biol., 2000, 27, 61-68.
[31]
Kumar, P.; Wiebe, L.I.; Atrazheva, E.; Tandon, M. An improved synthesis of alpha-AZA, alpha-AZP and alpha-AZG, the precursors to clinical markers of tissue hypoxia. Tetrahedron Lett., 2001, 42, 2077-2078.
[32]
Kumar, P.; Emami, S.; McEwan, A.J.B.; Wiebe, L.I. Development of an economical, single step synthesis of FAZA, a clinical hypoxia marker, and potential synthons to prepare its positional analogs. Lett. Drug Design . Discov., 2009, 6, 82-85.
[33]
Horwitz, J.P.; Chua, J.; Da Rooge, M.A.; Noel, M.; Klundt, I.L. Nucleosides. IX. The formation of 2′,3′-unsaturated pyrimidine nucleosides via a novel β-elimination reaction. J. Org. Chem., 1966, 31, 205-211.
[34]
Edmonton, PET Centre (EPC) data.