[1]
Quinn, T.C. Population migration and the spread of types 1 and 2 human immunodeficiency viruses. Proc. Natl. Acad. Sci. USA, 1994, 91(7), 2407-2414.
[2]
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006841.
[3]
Piot, P.; Plummer, F.A.; Mhalu, F.S.; Lamboray, J-L.; Chin, J.; Mann, J.M. AIDS: An international perspective. Science, 1988, 239(4840), 573-579.
[4]
Pope, M.; Haase, A.T. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med., 2003, 9(7), 847-852.
[5]
Budka, H. Neuropathology of human immunodeficiency virus infection. Brain Pathol., 1991, 1(3), 163-175.
[6]
Fauci, A.S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science, 1988. 239(3840), 6l7-22.
[7]
Lupton, D. Medicine as culture: Illness, disease and the body. Sage, 2012.
[8]
Van Maele, B.; Busschots, K.; Vandekerckhove, L.; Christ, F.; Debyser, Z. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci., 2006, 31(2), 98-105.
[9]
Sedaghat, A.R.; Dinoso, J.B.; Shen, L.; Wilke, C.O.; Siliciano, R.F. Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4832-4837.
[10]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1, 13-25.
[11]
De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 2009, 33(4), 307-320.
[12]
Girard, M.P.; Osmanov, S.K.; Kieny, M.P. A review of vaccine research and development: The human immunodeficiency virus (HIV). Vaccine, 2006, 24(19), 4062-4081.
[13]
Strayer, D.S.; Akkina, R.; Bunnell, B.A.; Dropulic, B.; Planelles, V.; Pomerantz, R.J.; Rossi, J.J.; Zaia, J.A. Current status of gene therapy strategies to treat HIV/AIDS. Mol. Ther., 2005, 11(6), 823-842.
[14]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4), a007161.
[15]
Greer, J.; Erickson, J.W.; Baldwin, J.J.; Varney, M.D. Application of the three-dimensional structures of protein target molecules in structure-based drug design. J. Med. Chem., 1994, 37(8), 1035-1054.
[16]
Zhu, F.X.; Chong, J.M.; Wu, L.; Yuan, Y. Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J. Virol., 2005, 79(2), 800-811.
[17]
Hirsch, M.S.; Conway, B.; Richard, T.; Johnson, V.A.; Brun-Vézinet, F.; Clotet, B.; Demeter, L.M.; Hammer, S.M.; Jacobsen, D.M.; Kuritzkes, D.R. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. J. Am. Med. Assoc., 1998, 279(24), 1984-1991.
[18]
Deeks, S.G.; Phillips, A.N. Clinical review: HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ, 2009, 338, 288-292.
[19]
Morison, L. The global epidemiology of HIV/AIDS. Br. Med. Bull., 2001, 58(1), 7-18.
[20]
Crepaz, N.; Hart, T.A.; Marks, G. Highly active antiretroviral therapy and sexual risk behavior: A meta-analytic review. J. Am. Med. Assoc., 2004, 292(2), 224-236.
[21]
Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 1997, 278(5341), 1295-1300.
[22]
Mehellou, Y.; De Clercq, E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J. Med. Chem., 2010, 53(2), 521-538.
[23]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[24]
Mitsuya, H.; Yarchoan, R.; Broder, S. Molecular targets for AIDS therapy. Science, 1990, 249(4976), 1533-1544.
[25]
Pereira, L.E.; Smith, J.M.; Srinivasan, P. Simian-Human Immunodeficiency Viruses and Their Impact on Non-Human Primate Models for AIDS; INTECH Open Access Publisher, 2012. DOI: 10.5772/53556.
[26]
Ni, X. The study of susceptibility and resistance of HIV integrases to integrase strand transfer inhibitors and the development of novel single domain antibody targeting HIV integrase. École normale supérieure de Cachan-ENS Cachan,, 2011.
[27]
Yasuno, T.; Ohe, T.; Takahashi, K.; Nakamura, S.; Mashino, T. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives. Bioorg. Med. Chem. Lett., 2015, 25(16), 3226-3229.
[28]
Ganguly, S.; Vithlani, V.; Kesharwani, A.; Kuhu, R.; Baskar, L.; Mitramazumder, P.; Sharon, A.; Dev, A. Synthesis, antibacterial and potential anti-HIV activity of some novel imidazole analogs. Acta Pharm., 2011, 61(2), 187-201.
[29]
Teixeira, C.; Barbault, F.; Rebehmed, J.; Liu, K.; Xie, L.; Lu, H.; Jiang, S.; Fan, B.; Maurel, F. Molecular modeling studies of N-substituted pyrrole derivatives—potential HIV-1 gp41 inhibitors. Bioorg. Med. Chem., 2008, 16(6), 3039-3048.
[30]
Yanagita, H.; Urano, E.; Matsumoto, K.; Ichikawa, R.; Takaesu, Y.; Ogata, M.; Murakami, T.; Wu, H.; Chiba, J.; Komano, J. Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase. Bioorg. Med. Chem., 2011, 19(2), 816-825.
[31]
Brigg, S.; Pribut, N.; Basson, A.E.; Avgenikos, M.; Venter, R.; Blackie, M.A.; van Otterlo, W.A.; Pelly, S.C. Novel indole sulfides as potent HIV-1 NNRTIs. Bioorg. Med. Chem. Lett., 2016, 26(6), 1580-1584.
[32]
Chauhan, M.; Rana, A.; Alex, J.M.; Negi, A.; Singh, S.; Kumar, R. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl (alkyl) amino-3-nitroquinoline and 2, 4-diaryl (dialkyl) amino-3-nitroquinolines as anticancer agents. Bioorg. Chem., 2015, 58, 1-10.
[33]
Chauhan, M.; Joshi, G.; Kler, H.; Kashyap, A.; Amrutkar, S.M.; Sharma, P.; Bhilare, K.D.; Banerjee, U.C.; Singh, S.; Kumar, R. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Advances, 2016, 6(81), 77717-77734.
[34]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[35]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[36]
Anthony, N.J. HIV-1 integrase: a target for new AIDS chemotherapeutics. Curr. Top. Med. Chem., 2004, 4(9), 979-990.
[37]
Perno, C.-F.; Ceccherini-Silberstein, F.; Armenia, D. Impact of integrase polymorphisms and minor quasispecies in HIV-1 infected individuals naive or treated with strand-transfer integrase inhibitors: a refined analysis by cloning and 454-Pyrosequencing techniques. 2010.
[38]
Frankel, A.D.; Young, J.A. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem., 1998, 67(1), 1-25.
[39]
Di Santo, R.; Costi, R.; Roux, A.; Artico, M.; Lavecchia, A.; Marinelli, L.; Novellino, E.; Palmisano, L.; Andreotti, M.; Amici, R. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J. Med. Chem., 2006, 49(6), 1939-1945.
[40]
Firley, D.; Courcot, B.; Gillet, J-M.; Fraisse, B.; Zouhiri, F.; Desmaële, D.; d’Angelo, J.; Ghermani, N.E. Experimental/ theoretical electrostatic properties of a styrylquinoline-type HIV-1 integrase inhibitor and its progenitors. J. Phys. Chem. B, 2006, 110, 537-547.
[41]
Metobo, S.E.; Jin, H.; Tsiang, M.; Kim, C.U. Design, synthesis, and biological evaluation of novel tricyclic HIV-1 integrase inhibitors by modification of its pyridine ring. Bioorg. Med. Chem. Lett., 2006, 16(15), 3985-3988.
[42]
Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.; Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem., 2006, 49(5), 1506-1508.
[43]
Luo, Z-g.; Zeng, C-c.; Wang, F.; He, H-q.; Wang, C-X.; Du, H-G.; Hu, L-M. Synthesis and biological activities of quinoline derivatives as HIV-1 integrase inhibitors. Chem. Res. Chin. Univ., 2009, 25, 841-845.
[44]
Jiao, Z-G.; He, H-Q.; Zeng, C-C.; Tan, J-J.; Hu, L-M.; Wang, C-X. Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl) benzenesulfonamide derivatives. Molecules, 2010, 15(3), 1903-1917.
[45]
Hu, L.; Yan, S.; Luo, Z.; Han, X.; Wang, Y.; Wang, Z.; Zeng, C. Design, practical synthesis, and biological evaluation of novel 6-(pyrazolylmethyl)-4-quinoline-3-carboxylic acid derivatives as HIV-1 integrase inhibitors. Molecules, 2012, 17(9), 10652-10666.
[46]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.; Zarghi, A. Design, synthesis and docking studies of new 4-hydroxyquinoline-3-carbohydrazide derivatives as anti-HIV-1 agents. Drug Res., 2013, 63(4), 192-197.
[47]
Costi, R.; Métifiot, M.; Chung, S.; Cuzzucoli Crucitti, G.; Maddali, K.; Pescatori, L.; Messore, A.; Madia, V.N.; Pupo, G.; Scipione, L. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J. Med. Chem., 2014, 57(8), 3223-3234.
[48]
Velthuisen, E.J.; Johns, B.A.; Temelkoff, D.P.; Brown, K.W.; Danehower, S.C. The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors. Eur. J. Med. Chem., 2016, 117, 99-112.
[49]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.; Ashtiani, S.H.; Zarghi, A. Novel quinolone-3-carboxylic acid derivatives as anti-HIV-1 agents: Design, synthesis, and biological activities. Med. Chem. Res., 2016, 25(9), 1861-1876.
[50]
Wadhwa, P.; Jain, P.; Jadhav, H.; Rudrawar, S. Quinoline, coumarin and other heterocyclic analogues based HIV-1 integrase inhibitors. Curr. Drug Discov. Technol., 2018, 15(1), 2-19.
[51]
Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B.A.; Marchand, D.; Bardiot, D.; Van der Veken, N.J.; Van Remoortel, B.; Strelkov, S.V. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol., 2010, 6(6), 442-448.
[52]
Sanchez, T.W. Design and discovery of small molecules inhibiting the interaction of cellular LEDGF/p75 and HIV-1 integrase. University of Southern California, May 2012, 78.
[53]
De Luca, L.; Ferro, S.; Morreale, F.; De Grazia, S.; Chimirri, A. Inhibitors of the Interactions between HIV‐1 IN and the Cofactor LEDGF/p75. ChemMedChem, 2011, 6(7), 1184-1191.
[54]
Sancineto, L.; Iraci, N.; Barreca, M.L.; Massari, S.; Manfroni, G.; Corazza, G.; Cecchetti, V.; Marcello, A.; Daelemans, D.; Pannecouque, C. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorg. Med. Chem., 2014, 22(17), 4658-4666.
[55]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[56]
Hameed, A.; Abdullah, M.I.; Ahmed, E.; Sharif, A.; Irfan, A.; Masood, S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg. Chem., 2016, 65, 175-182.
[57]
Chander, S.; Ashok, P.; Zheng, Y-T.; Wang, P.; Raja, K.S.; Taneja, A.; Murugesan, S. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorg. Chem., 2016, 64, 66-73.
[58]
Zhong, F.; Geng, G.; Chen, B.; Pan, T.; Li, Q.; Zhang, H.; Bai, C. Identification of benzenesulfonamide quinoline derivatives as potent HIV-1 replication inhibitors targeting Rev protein. Org. Biomol. Chem., 2015, 13(6), 1792-1799.
[59]
Gama, N.; Kumar, K.; Ekengard, E.; Haukka, M.; Darkwa, J.; Nordlander, E.; Meyer, D. Gold (I) complex of 1, 1′-bis (diphenylphosphino) ferrocene–quinoline conjugate: A virostatic agent against HIV-1. Biometals, 2016, 29(3), 389-397.