Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review on Quinoline Derived Scaffolds as Anti-HIV Agents

Author(s): Nisha Chokkar, Sourav Kalra, Monika Chauhan and Raj Kumar*

Volume 19, Issue 6, 2019

Page: [510 - 526] Pages: 17

DOI: 10.2174/1389557518666181018163448

Price: $65

Abstract

After restricting the proliferation of CD4+T cells, Human Immunodeficiency Virus (HIV), infection persists at a very fast rate causing Acquired Immunodeficiency Syndrome (AIDS). This demands the vigorous need of suitable anti-HIV agents, as existing medicines do not provide a complete cure and exhibit drawbacks like toxicities, drug resistance, side-effects, etc. Even the introduction of Highly Active Antiretroviral Therapy (HAART) failed to combat HIV/AIDS completely. The major breakthrough in anti-HIV discovery was marked with the discovery of raltegravir in 2007, the first integrase (IN) inhibitor. Thereafter, the discovery of elvitegravir, a quinolone derivative emerged as the potent HIV-IN inhibitor. Though many more classes of different drugs that act as anti-HIV have been identified, some of which are under clinical trials, but the recent serious focus is still laid on quinoline and its analogues. In this review, we have covered all the quinoline-based derivatives that inhibit various targets and are potential anti-HIV agents in various phases of the drug discovery.

Keywords: HIV, AIDS, anti-retroviral agents, quinolines, molecular modelling, HAART.

Graphical Abstract

[1]
Quinn, T.C. Population migration and the spread of types 1 and 2 human immunodeficiency viruses. Proc. Natl. Acad. Sci. USA, 1994, 91(7), 2407-2414.
[2]
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006841.
[3]
Piot, P.; Plummer, F.A.; Mhalu, F.S.; Lamboray, J-L.; Chin, J.; Mann, J.M. AIDS: An international perspective. Science, 1988, 239(4840), 573-579.
[4]
Pope, M.; Haase, A.T. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med., 2003, 9(7), 847-852.
[5]
Budka, H. Neuropathology of human immunodeficiency virus infection. Brain Pathol., 1991, 1(3), 163-175.
[6]
Fauci, A.S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science, 1988. 239(3840), 6l7-22.
[7]
Lupton, D. Medicine as culture: Illness, disease and the body. Sage, 2012.
[8]
Van Maele, B.; Busschots, K.; Vandekerckhove, L.; Christ, F.; Debyser, Z. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci., 2006, 31(2), 98-105.
[9]
Sedaghat, A.R.; Dinoso, J.B.; Shen, L.; Wilke, C.O.; Siliciano, R.F. Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4832-4837.
[10]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1, 13-25.
[11]
De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 2009, 33(4), 307-320.
[12]
Girard, M.P.; Osmanov, S.K.; Kieny, M.P. A review of vaccine research and development: The human immunodeficiency virus (HIV). Vaccine, 2006, 24(19), 4062-4081.
[13]
Strayer, D.S.; Akkina, R.; Bunnell, B.A.; Dropulic, B.; Planelles, V.; Pomerantz, R.J.; Rossi, J.J.; Zaia, J.A. Current status of gene therapy strategies to treat HIV/AIDS. Mol. Ther., 2005, 11(6), 823-842.
[14]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4), a007161.
[15]
Greer, J.; Erickson, J.W.; Baldwin, J.J.; Varney, M.D. Application of the three-dimensional structures of protein target molecules in structure-based drug design. J. Med. Chem., 1994, 37(8), 1035-1054.
[16]
Zhu, F.X.; Chong, J.M.; Wu, L.; Yuan, Y. Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J. Virol., 2005, 79(2), 800-811.
[17]
Hirsch, M.S.; Conway, B.; Richard, T.; Johnson, V.A.; Brun-Vézinet, F.; Clotet, B.; Demeter, L.M.; Hammer, S.M.; Jacobsen, D.M.; Kuritzkes, D.R. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. J. Am. Med. Assoc., 1998, 279(24), 1984-1991.
[18]
Deeks, S.G.; Phillips, A.N. Clinical review: HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ, 2009, 338, 288-292.
[19]
Morison, L. The global epidemiology of HIV/AIDS. Br. Med. Bull., 2001, 58(1), 7-18.
[20]
Crepaz, N.; Hart, T.A.; Marks, G. Highly active antiretroviral therapy and sexual risk behavior: A meta-analytic review. J. Am. Med. Assoc., 2004, 292(2), 224-236.
[21]
Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 1997, 278(5341), 1295-1300.
[22]
Mehellou, Y.; De Clercq, E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J. Med. Chem., 2010, 53(2), 521-538.
[23]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[24]
Mitsuya, H.; Yarchoan, R.; Broder, S. Molecular targets for AIDS therapy. Science, 1990, 249(4976), 1533-1544.
[25]
Pereira, L.E.; Smith, J.M.; Srinivasan, P. Simian-Human Immunodeficiency Viruses and Their Impact on Non-Human Primate Models for AIDS; INTECH Open Access Publisher, 2012. DOI: 10.5772/53556.
[26]
Ni, X. The study of susceptibility and resistance of HIV integrases to integrase strand transfer inhibitors and the development of novel single domain antibody targeting HIV integrase. École normale supérieure de Cachan-ENS Cachan,, 2011.
[27]
Yasuno, T.; Ohe, T.; Takahashi, K.; Nakamura, S.; Mashino, T. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives. Bioorg. Med. Chem. Lett., 2015, 25(16), 3226-3229.
[28]
Ganguly, S.; Vithlani, V.; Kesharwani, A.; Kuhu, R.; Baskar, L.; Mitramazumder, P.; Sharon, A.; Dev, A. Synthesis, antibacterial and potential anti-HIV activity of some novel imidazole analogs. Acta Pharm., 2011, 61(2), 187-201.
[29]
Teixeira, C.; Barbault, F.; Rebehmed, J.; Liu, K.; Xie, L.; Lu, H.; Jiang, S.; Fan, B.; Maurel, F. Molecular modeling studies of N-substituted pyrrole derivatives—potential HIV-1 gp41 inhibitors. Bioorg. Med. Chem., 2008, 16(6), 3039-3048.
[30]
Yanagita, H.; Urano, E.; Matsumoto, K.; Ichikawa, R.; Takaesu, Y.; Ogata, M.; Murakami, T.; Wu, H.; Chiba, J.; Komano, J. Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase. Bioorg. Med. Chem., 2011, 19(2), 816-825.
[31]
Brigg, S.; Pribut, N.; Basson, A.E.; Avgenikos, M.; Venter, R.; Blackie, M.A.; van Otterlo, W.A.; Pelly, S.C. Novel indole sulfides as potent HIV-1 NNRTIs. Bioorg. Med. Chem. Lett., 2016, 26(6), 1580-1584.
[32]
Chauhan, M.; Rana, A.; Alex, J.M.; Negi, A.; Singh, S.; Kumar, R. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl (alkyl) amino-3-nitroquinoline and 2, 4-diaryl (dialkyl) amino-3-nitroquinolines as anticancer agents. Bioorg. Chem., 2015, 58, 1-10.
[33]
Chauhan, M.; Joshi, G.; Kler, H.; Kashyap, A.; Amrutkar, S.M.; Sharma, P.; Bhilare, K.D.; Banerjee, U.C.; Singh, S.; Kumar, R. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Advances, 2016, 6(81), 77717-77734.
[34]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[35]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[36]
Anthony, N.J. HIV-1 integrase: a target for new AIDS chemotherapeutics. Curr. Top. Med. Chem., 2004, 4(9), 979-990.
[37]
Perno, C.-F.; Ceccherini-Silberstein, F.; Armenia, D. Impact of integrase polymorphisms and minor quasispecies in HIV-1 infected individuals naive or treated with strand-transfer integrase inhibitors: a refined analysis by cloning and 454-Pyrosequencing techniques. 2010.
[38]
Frankel, A.D.; Young, J.A. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem., 1998, 67(1), 1-25.
[39]
Di Santo, R.; Costi, R.; Roux, A.; Artico, M.; Lavecchia, A.; Marinelli, L.; Novellino, E.; Palmisano, L.; Andreotti, M.; Amici, R. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J. Med. Chem., 2006, 49(6), 1939-1945.
[40]
Firley, D.; Courcot, B.; Gillet, J-M.; Fraisse, B.; Zouhiri, F.; Desmaële, D.; d’Angelo, J.; Ghermani, N.E. Experimental/ theoretical electrostatic properties of a styrylquinoline-type HIV-1 integrase inhibitor and its progenitors. J. Phys. Chem. B, 2006, 110, 537-547.
[41]
Metobo, S.E.; Jin, H.; Tsiang, M.; Kim, C.U. Design, synthesis, and biological evaluation of novel tricyclic HIV-1 integrase inhibitors by modification of its pyridine ring. Bioorg. Med. Chem. Lett., 2006, 16(15), 3985-3988.
[42]
Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.; Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem., 2006, 49(5), 1506-1508.
[43]
Luo, Z-g.; Zeng, C-c.; Wang, F.; He, H-q.; Wang, C-X.; Du, H-G.; Hu, L-M. Synthesis and biological activities of quinoline derivatives as HIV-1 integrase inhibitors. Chem. Res. Chin. Univ., 2009, 25, 841-845.
[44]
Jiao, Z-G.; He, H-Q.; Zeng, C-C.; Tan, J-J.; Hu, L-M.; Wang, C-X. Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl) benzenesulfonamide derivatives. Molecules, 2010, 15(3), 1903-1917.
[45]
Hu, L.; Yan, S.; Luo, Z.; Han, X.; Wang, Y.; Wang, Z.; Zeng, C. Design, practical synthesis, and biological evaluation of novel 6-(pyrazolylmethyl)-4-quinoline-3-carboxylic acid derivatives as HIV-1 integrase inhibitors. Molecules, 2012, 17(9), 10652-10666.
[46]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.; Zarghi, A. Design, synthesis and docking studies of new 4-hydroxyquinoline-3-carbohydrazide derivatives as anti-HIV-1 agents. Drug Res., 2013, 63(4), 192-197.
[47]
Costi, R.; Métifiot, M.; Chung, S.; Cuzzucoli Crucitti, G.; Maddali, K.; Pescatori, L.; Messore, A.; Madia, V.N.; Pupo, G.; Scipione, L. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J. Med. Chem., 2014, 57(8), 3223-3234.
[48]
Velthuisen, E.J.; Johns, B.A.; Temelkoff, D.P.; Brown, K.W.; Danehower, S.C. The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors. Eur. J. Med. Chem., 2016, 117, 99-112.
[49]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.; Ashtiani, S.H.; Zarghi, A. Novel quinolone-3-carboxylic acid derivatives as anti-HIV-1 agents: Design, synthesis, and biological activities. Med. Chem. Res., 2016, 25(9), 1861-1876.
[50]
Wadhwa, P.; Jain, P.; Jadhav, H.; Rudrawar, S. Quinoline, coumarin and other heterocyclic analogues based HIV-1 integrase inhibitors. Curr. Drug Discov. Technol., 2018, 15(1), 2-19.
[51]
Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B.A.; Marchand, D.; Bardiot, D.; Van der Veken, N.J.; Van Remoortel, B.; Strelkov, S.V. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol., 2010, 6(6), 442-448.
[52]
Sanchez, T.W. Design and discovery of small molecules inhibiting the interaction of cellular LEDGF/p75 and HIV-1 integrase. University of Southern California, May 2012, 78.
[53]
De Luca, L.; Ferro, S.; Morreale, F.; De Grazia, S.; Chimirri, A. Inhibitors of the Interactions between HIV‐1 IN and the Cofactor LEDGF/p75. ChemMedChem, 2011, 6(7), 1184-1191.
[54]
Sancineto, L.; Iraci, N.; Barreca, M.L.; Massari, S.; Manfroni, G.; Corazza, G.; Cecchetti, V.; Marcello, A.; Daelemans, D.; Pannecouque, C. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorg. Med. Chem., 2014, 22(17), 4658-4666.
[55]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[56]
Hameed, A.; Abdullah, M.I.; Ahmed, E.; Sharif, A.; Irfan, A.; Masood, S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg. Chem., 2016, 65, 175-182.
[57]
Chander, S.; Ashok, P.; Zheng, Y-T.; Wang, P.; Raja, K.S.; Taneja, A.; Murugesan, S. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorg. Chem., 2016, 64, 66-73.
[58]
Zhong, F.; Geng, G.; Chen, B.; Pan, T.; Li, Q.; Zhang, H.; Bai, C. Identification of benzenesulfonamide quinoline derivatives as potent HIV-1 replication inhibitors targeting Rev protein. Org. Biomol. Chem., 2015, 13(6), 1792-1799.
[59]
Gama, N.; Kumar, K.; Ekengard, E.; Haukka, M.; Darkwa, J.; Nordlander, E.; Meyer, D. Gold (I) complex of 1, 1′-bis (diphenylphosphino) ferrocene–quinoline conjugate: A virostatic agent against HIV-1. Biometals, 2016, 29(3), 389-397.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy