[1]
Sundaram, K.; Srinivasan, S. Computer simulated modeling of biomolecular systems. Comput. Programs Biomed., 1979, 10(1), 29-33.
[2]
Kanethisa, M.; Klein, P.; Greif, P.; DeLisi, C. Computer analysis and structure prediction of nucleic acid and proteins. Nucleic Acids Res., 1984, 12(Part1), 417-428.
[3]
Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195.
[4]
Bolten, B.M.; DeGregorio, T. Trends in development cycles. Nat. Rev. Drug Discov., 2002, 1(5), 335-336.
[5]
Lahana, R. How many leads from HTS? Drug Discov. Today, 1999, 4(10), 447-448.
[6]
Xu, J.; Hagler, A. Chemoinformatics and Drug Discovery. Molecules, 2002, 7(8), 566-600.
[7]
Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[8]
Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-Art in Ligand-based virtual screening. Drug Discov. Today, 2011, 16(9-10), 372-376.
[9]
Lima, A.N.; Philot, E.A.; Trossini, G.H.G.; Scott, L.P.B.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[10]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[11]
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks., 2015, 61, 85-117.
[14]
Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Ceulemans, H.; Wegner, J.K.; Hochreiter, S. Deep learning as an opportunity in virtual screening. Workshop on Deep Learning and Representation Learning (NIPS 2014), 2014.
[15]
Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov., 2002, 1(11), 882-894.
[16]
Doman, T.N.; McGovern, S.L.; Witherbee, B.J.; Kasten, T.P.; Kurumbail, R.; Stallings, W.C.; Connolly, D.T.; Shoichet, B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 2002, 45(11), 2213-2221.
[17]
Evensen, E.; Eksterowicz, J.E.; Stanton, R.V.; Oshiro, C.; Grootenhuis, P.D.J.; Bradley, E.K. Comparing performance of computational tools for combinatorial library design. J. Med. Chem., 2003, 46(24), 5125-5128.
[18]
Stahura, F.L.; Bajorath, J. Virtual screening methods that complement HTS. Comb. Chem. High Throughput Screen., 2004, 7(4), 259-269.
[19]
Elowe, N.H.; Blanchard, J.E.; Cechetto, J.D.; Brown, E.D. Experimental screening of dihydrofolate reductase yields a “Test Set” of 50,000 small molecules for a computational data-mining and docking competition. J. Biomol. Screen., 2005, 10(7), 653-657.
[20]
Paiva, A.M.; Vanderwall, D.E.; Blanchard, J.S.; Kozarich, J.W.; Williamson, J.M.; Kelly, T.M. Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of mycobacterium tuberculosis. Biochim. Biophys. Acta, 2001, 1545(1-2), 67-77.
[21]
Brenk, R.; Irwin, J.J.; Shoichet, B.K. Here Be Dragons: Docking and screening in an uncharted region of chemical space. J. Biomol. Screen., 2005, 10(7), 667-674.
[22]
Schneider, G. Virtual screening: An endless staircase? Nat. Rev. Drug Discov., 2010, 9(4), 273-276.
[23]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[24]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[25]
Eddershaw, P.J.; Beresford, A.P.; Bayliss, M.K. ADME/PK as Part of a rational approach to drug discovery. Drug Discov. Today, 2000, 5(9), 409-414.
[26]
Clark, D.; Pickett, S. Computational methods for the prediction of “Drug-Likeness.”. Drug Discov. Today, 2000, 5(2), 49-58.
[27]
Garcia-Serna, R.; Vidal, D.; Remez, N.; Mestres, J. Large-scale predictive drug safety: From structural alerts to biological mechanisms. Chem. Res. Toxicol., 2015, 28(10), 1875-1887.
[28]
Bielska, E.; Lucas, X.; Czerwoniec, A.; Kasprzak, J.M.; Kaminska, K.H.; Bujnicki, J.M. Virtual screening strategies in drug design - methods and applications. Biotechnologia, 2011, 92(3), 249-264.
[29]
Pérez-Sianes, J.; Pérez-Sánchez, H.; Díaz, F. Virtual screening: A challenge for deep learning.In 10th International Conference on Practical Applications of Computational Biology Bioinformatics; Saberi M.M.; Rocha, M.P.; Fdez-Riverola, F.; Domínguez Mayo, F.J.; De Paz, J.F.; Eds.; Springer International Publishing: Cham, 2016; pp. 13-22.
[30]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[31]
Kroemer, R.T. Structure-based drug design: Docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[32]
Kubinyi, H. Succes Stories of Computer-Aided Design.In:Computer Applications in Pharmaceutical Research and Development; Ekins, S., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
[33]
Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[34]
Mohan, V.; Gibbs, A.C.; Cummings, M.D.; Jaeger, E.P.; DesJarlais, R.L. Docking: Successes and challenges. Curr. Pharm. Des., 2005, 11(3), 323-333.
[35]
Johnson, A.M.; Maggiora, G.M. Concepts and Applications of Molecular Similarity; John Wiley & Sons, Inc.: New York, 1990.
[36]
Halperin, I.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Genet, 2002, 47(4), 409-443.
[37]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 335-373.
[38]
Reddy, A.S.; Pati, S.P.; Kumar, P.P.; Pradeep, H.N.; Sastry, G.N. Virtual screening in drug discovery: A computational perspective. Curr. Protein Pept. Sci., 2007, 8(4), 329-351.
[39]
Renner, S.; Schneider, G. Fuzzy pharmacophore models from molecular alignments for correlation-vector-based virtual screening. J. Med. Chem., 2004, 47(19), 4653-4664.
[40]
Putta, S.; Lemmen, C.; Beroza, P.; Greene, J. A novel shape-feature based approach to virtual library screening. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1230-1240.
[41]
Moffat, K.; Gillet, V.J.; Whittle, M.; Bravi, G.; Leach, A.R. A comparison of field-based similarity searching methods: CatShape, FBSS, and ROCS. J. Chem. Inf. Model., 2008, 48(4), 719-729.
[42]
Marialke, J.; Körner, R.; Tietze, S.; Apostolakis, A. Graph-based molecular alignment (GMA). J. Chem. Inf. Model., 2007, 47(2), 591-601.
[43]
Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics, 2nd, Revis ed.; Wiley-VCH, 2009.
[44]
Wang, T.; Wu, M-B.; Lin, J-P.; Yang, L-R. Quantitative Structure–activity Relationship: Promising advances in drug discovery platforms. Expert Opin. Drug Discov., 2015, 10(12), 1283-1300.
[45]
Muegge, I.; Mukherjee, P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin. Drug Discov., 2016, 11(2), 137-148.
[46]
Zhang, Q.; Muegge, I. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: Ranking, voting, and consensus scoring. J. Med. Chem., 2006, 49(5), 1536-1548.
[47]
Venkatraman, V.; Pérez-Nueno, V.I.; Mavridis, L.; Ritchie, D.W. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J. Chem. Inf. Model., 2010, 50(12), 2079-2093.
[48]
Cruciani, G.; Pastor, M.; Mannhold, R. Suitability of molecular descriptors for database mining. a comparative analysis. J. Med. Chem., 2002, 45(13), 2685-2694.
[49]
Eckert, H.; Bajorath, J. Determination and mapping of activity-specific descriptor value ranges for the identification of active compounds. J. Med. Chem., 2006, 49(7), 2284-2293.
[50]
Gerlach, C.; Broughton, H.; Zaliani, A. FTree query construction for virtual screening: A statistical analysis. J. Comput. Aided Mol. Des., 2008, 22(2), 111-118.
[51]
Rönkkö, T.; Tervo, A.J.; Parkkinen, J.; Poso, A. BRUTUS: Optimization of a grid-based similarity function for rigid-body molecular superposition. II. description and characterization. J. Comput. Aided Mol. Des., 2006, 20(4), 227-236.
[52]
Rush, T.S.; Grant, J.A.; Mosyak, L.; Nicholls, A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J. Med. Chem., 2005, 48(5), 1489-1495.
[53]
Kim, K-H.; Kim, N.D.; Seong, B-L. Pharmacophore-based virtual screening: A review of recent applications. Expert Opin. Drug Discov., 2010, 5(3), 205-222.
[54]
Gund, P.; Wipke, W.T.; Langridge, R. Computer searching of a molecular structure file for pharmacophoric patterns.In Proceedings of the International Conference on Computers in Chemical Research and Education Elsevier: Amsterdam, 1974, Vol. 3, pp. 5-21.
[55]
Sanders, M.P.A.; Barbosa, A.J.M.; Zarzycka, B.; Nicolaes, G.A.F.; Klomp, J.P.G.; de Vlieg, J.; Del Rio, A. Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Model., 2012, 52(6), 1607-1620.
[56]
Yang, S-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[57]
Lorenzo, V.P.; Barbosa Filho, J.M.; Scotti, L.; Scotti, M.T. Combined structure-and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev. Bras. Farmacogn., 2015, 25(6), 690-697.
[58]
Lorenzo, V.; Lúcio, A.; Scotti, L.; Tavares, J.; Filho, J.; Lima, T.; Rocha, J.; Scotti, M. Structure- and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against leishmania donovani. Curr. Pharm. Des., 2016, 22(34), 5196-5203.
[59]
Wang, Y.; Li, R.; Zheng, Z.; Yi, H.; Li, Z. Identification of novel cathepsin k inhibitors using ligand-based virtual screening and structure-based docking. RSC Advances, 2016, 6(86), 82961-82968.
[60]
Drwal, M.N.; Griffith, R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov. Today. Technol., 2013, 10(3), e395-e401.
[61]
Bissantz, C.; Schalon, C.; Guba, W.; Stahl, M. Focused library design in gpcr projects on the example of 5-ht(2c) agonists: Comparison of structure-based virtual screening with ligand-based search methods. Proteins, 2005, 61(4), 938-952.
[62]
Lazo, J.S.; Wipf, P. Combinatorial chemistry and contemporary pharmacology. J. Pharmacol. Exp. Ther., 2000, 293(3), 705-709.
[63]
Schneider, G.; Böhm, H.J. Virtual screening and fast automated docking methods. Drug Discov. Today, 2002, 7(1), 64-70.
[64]
Hou, T.; Xu, X. Recent development and application of virtual screening in drug discovery: An overview. Curr. Pharm. Des., 2004, 10(9), 1011-1033.
[65]
Murcko, M.A. Recent advances in ligand design methods.In Reviews in Computational Chemistry; Lipkowitz, K.B., Boyd, D. B., Eds.; Reviews in computational chemistry; John Wiley Sons, Inc.: Hoboken, NJ, USA, 1997; Vol. 11, pp. 1-66.
[66]
Brown, J.B.; Niijima, S.; Okuno, Y. Compound-Protein interaction prediction within chemogenomics: Theoretical concepts, practical usage, and future directions. Mol. Inform., 2013, 32(11-12), 906-921.
[67]
Klabunde, T. Chemogenomic approaches to drug discovery: Similar receptors bind similar ligands. Br. J. Pharmacol., 2007, 152(1), 5-7.
[68]
Konc, J.; Janežič, D. ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics, 2010, 26(9), 1160-1168.
[69]
Rognan, D. Chemogenomic approaches to rational drug design. Br. J. Pharmacol., 2007, 152(1), 38-52.
[70]
Frimurer, T.M.; Ulven, T.; Elling, C.E.; Gerlach, L-O.; Kostenis, E.; Högberg, T. A physicogenetic method to assign ligand-binding relationships between 7TM receptors. Bioorg. Med. Chem. Lett., 2005, 15(16), 3707-3712.
[71]
Bock, J.R.; Gough, D.A. Virtual screen for ligands of orphan g protein-coupled receptors. J. Chem. Inf. Model., 2005, 45(5), 1402-1414.
[72]
Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem., 2006, 49(23), 6789-6801.
[73]
Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G.M.; Liedl, K.R.; Wolber, G. How to optimize shape-based virtual screening: Choosing the right query and including chemical information. J. Chem. Inf. Model., 2009, 49(3), 678-692.
[74]
Nicholls, A. What do we know and when do we know it? J. Comput. Aided Mol. Des., 2008, 22(3-4), 239-255.
[75]
Fechner, N.; Jahn, A.; Hinselmann, G.; Zell, A. Estimation of the applicability domain of kernel-based machine learning models for virtual screening. J. Cheminform., 2010, 2, 1-21.
[76]
Michalski, R.S. A theory and methodology of inductive learning.In Machine Learning: An Artificial Intelligence Approach; Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M., Eds.; Morgan-Kauffman, 1983, pp. 83-134.
[77]
Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann Publishers Inc., 2011.
[78]
Terfloth, L.; Gasteiger, J. Neural networks and genetic algorithms in drug design. Drug Discov. Today, 2001, 6(01), 102-108.
[79]
Fukunishi, Y. Structure-based drug screening and ligand-based drug screening with machine learning.In Comb. Chem. High Throughput Screen., 2009, 12(4), 397-408.
[80]
Butkiewicz, M.; Mueller, R.; Selic, D.; Dawson, E.; Meiler, J. Application of machine learning approaches on quantitative structure activity relationships. 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology IEEE, 2009, pp. 255-262.
[81]
Melville, J.L.; Burke, E.K.; Hirst, J.D. Machine learning in virtual screening. Comb. Chem. High Throughput Screen., 2009, 12(4), 332-343.
[82]
Wale, N. Machine learning in drug discovery and development. Drug Dev. Res., 2011, 72(1), 112-119.
[83]
Hoskins, J.C.; Himmelblau, D.M. Artificial neural network models of knowledge representation in chemical engineering. Comput. Chem. Eng., 1988, 12(9-10), 881-890.
[84]
Winkler, D.A.; Burden, F.R. Bayesian neural nets for modeling in drug discovery. Drug Discov. Today, 2004, 2(3), 104-111.
[85]
Zheng, F.; Zheng, G.; Deaciuc, A.G.; Zhan, C-G.; Dwoskin, L.P.; Crooks, P.A. Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2. Bioorg. Med. Chem., 2007, 15(8), 2975-2992.
[86]
Qin, Y.; Deng, H.; Yan, H.; Zhong, R. An accurate nonlinear QSAR model for the antitumor activities of chloroethylnitrosoureas using neural networks. J. Mol. Graph. Model., 2011, 29(6), 826-833.
[87]
Durrant, J.D.; Friedman, A.J.; Rogers, K.E.; McCammon, J.A. Comparing neural-network scoring functions and the state of the art: Applications to common library screening. J. Chem. Inf. Model., 2013, 53(7), 1726-1735.
[88]
Betzi, S.; Suhre, K.; Chétrit, B.; Guerlesquin, F.; Morelli, X. GFscore: A general nonlinear consensus scoring function for high-throughput docking. J. Chem. Inf. Model., 2006, 46(4), 1704-1712.
[89]
Schneider, P.; Tanrikulu, Y.; Schneider, G. Self-Organizing maps in drug discovery: Compound library design, scaffold-hopping, repurposing. Curr. Med. Chem., 2009, 16(3), 258-266.
[90]
Vracko, M. Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies. Curr. Comput. Aided-Drug Des., 2005, 1(1), 73-78.
[91]
de Molfetta, F.A.; Angelotti, W.F.D.; Romero, R.A.F.; Montanari, C.A.; da Silva, A.B.F. A neural networks study of quinone compounds with trypanocidal activity. J. Mol. Model., 2008, 14(10), 975-985.
[92]
Schneider, P.; Müller, A.T.; Gabernet, G.; Button, A.L.; Posselt, G.; Wessler, S.; Hiss, J.A.; Schneider, G. Hybrid network model for “Deep Learning” of chemical data: Application to antimicrobial peptides. Mol. Inform., 2017, 36(1-2), 1600011.
[93]
Mlinsek, G.; Novic, M.; Hodoscek, M.; Solmajer, T. Prediction of enzyme binding: Human thrombin inhibition study by quantum chemical and artificial intelligence methods based on X-Ray structures. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1286-1294.
[94]
Sabet, R.; Fassihi, A.; Hemmateenejad, B.; Saghaei, L.; Miri, R.; Gholami, M. Computer-aided design of novel antibacterial 3-hydroxypyridine-4-ones: Application of QSAR methods based on the MOLMAP approach. J. Comput. Aided Mol. Des., 2012, 26(3), 349-361.
[95]
Heikamp, K.; Bajorath, J. Support vector machines for drug discovery. Expert Opin. Drug Discov., 2014, 9(1), 93-104.
[96]
Sun, H.; Veith, H.; Xia, M.; Austin, C.P.; Huang, R. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. J. Chem. Inf. Model., 2011, 51(10), 2474-2481.
[97]
Heikamp, K.; Bajorath, J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J. Chem. Inf. Model., 2013, 53(4), 791-801.
[98]
Kinnings, S.L.; Liu, N.; Tonge, P.J.; Jackson, R.M.; Xie, L.; Bourne, P.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model., 2011, 51(2), 408-419.
[99]
Yamazaki, K.; Kusunose, N.; Fujita, K.; Sato, H.; Asano, S.; Dan, A.; Kanaoka, M. Identification of phosphodiesterase-1 and 5 dual inhibitors by a ligand-based virtual screening optimized for lead evolution. Bioorg. Med. Chem. Lett., 2006, 16(5), 1371-1379.
[100]
Scotti, M.; Speck-Planche, A.; Tavares, J.; da Silva, M.D.S.; Cordeiro, M.; Scotti, L. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr. Bioinform., 2015, 10(5), 509-519.
[101]
Deconinck, E.; Zhang, M.H.; Coomans, D.; Vander Heyden, Y. Classification tree models for the prediction of blood-brain barrier passage of drugs. J. Chem. Inf. Model., 2006, 46(3), 1410-1419.
[102]
Schneider, N.; Jäckels, C.; Andres, C.; Hutter, M.C. Gradual in silico filtering for druglike substances. J. Chem. Inf. Model., 2008, 48(3), 613-628.
[103]
Lei, T.; Li, Y.; Song, Y.; Li, D.; Sun, H.; Hou, T. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J. Cheminform., 2016, 8(1), 6.
[104]
Cano, G.; Garcia-Rodriguez, J.; Garcia-Garcia, A.; Perez-Sanchez, H.; Benediktsson, J.A.; Thapa, A.; Barr, A. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Syst. Appl., 2017, 72, 151-159.
[105]
Li, B-K.; He, B.; Tian, Z-Y.; Chen, Y-Z.; Xue, Y. Modeling, predicting and virtual screening of selective inhibitors of MMP-3 and MMP-9 over MMP-1 using random forest classification. Chemom. Intell. Lab. Syst., 2015, 147, 30-40.
[106]
Jensen, B.F.; Vind, C.; Brockhoff, P.B.; Refsgaard, H.H.F. In silico prediction of cytochrome p450 2d6 and 3a4 inhibition using gaussian kernel weighted k -nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J. Med. Chem., 2007, 50(3), 501-511.
[107]
Cao, G.P.; Arooj, M.; Thangapandian, S.; Park, C.; Arulalapperumal, V.; Kim, Y.; Kwon, Y.J.; Kim, H.H.; Suh, J.K.; Lee, K.W. A Lazy learning-based QSAR classification study for screening potential histone deacetylase 8 (HDAC8) inhibitors. SAR QSAR Environ. Res., 2015, 26(5), 397-420.
[108]
Helma, C. Lazy Structure-activity relationships (Lazar) for the prediction of rodent carcinogenicity and salmonella mutagenicity. Mol. Divers., 2006, 10(2), 147-158.
[109]
Domingos, P.; Pazzani, M. On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn., 1997, 29(2-3), 103-130.
[110]
Klon, A.E.; Glick, M.; Davies, J.W. Application of machine learning to improve the results of high-throughput docking against the HIV-1 protease. J. Chem. Inf. Comput. Sci., 2004, 44(6), 2216-2224.
[111]
Glick, M.; Jenkins, J.L.; Nettles, J.H.; Hitchings, H.; Davies, J.W. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. J. Chem. Inf. Model., 2006, 46(1), 193-200.
[112]
Lang, P.T.; Kuntz, I.D.; Maggiora, G.M.; Bajorath, J. Evaluating the high-throughput screening computations. J. Biomol. Screen., 2005, 10(7), 649-652.
[113]
Soulère, L.; Soulage, C.O. Exploring docking methods for virtual screening: application to the identification of neuraminidase and ftsz potential inhibitors. Mol. Simul., 2017, 43(8), 656-663.
[114]
Bera, I.; Marathe, M.V.; Payghan, P.V.; Ghoshal, N. Identification of novel hits as highly prospective dual agonists for mu and kappa opioid receptors: An integrated in silico approach. J. Biomol. Struct. Dyn., 2017, 2, 1-23.
[115]
Barrett, S.; Langdon, W. Advances in the application of machine learning techniques in drug discovery, design and development. Appl. Soft Comput., 2006, 13, 346.
[116]
Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR Studies. Int. J. Mol. Sci., 2009, 10(5), 1978-1998.
[117]
Plewczynski, D.; Spieser, S.A.H.; Koch, U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model., 2006, 46(3), 1098-1106.
[118]
Plewczynski, D.; Spieser, S.A.H.; Koch, U. Performance of machine learning methods for ligand-based virtual screening. Comb. Chem. High Throughput Screen., 2009, 12(4), 358-368.
[119]
Ma, X.H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb. Chem. High Throughput Screen., 2009, 12(4), 344-357.
[120]
Vyas, R.; Bapat, S.; Jain, E.; Tambe, S.S.; Karthikeyan, M.; Kulkarni, B.D. A study of applications of machine learning based classification methods for virtual screening of lead molecules. Comb. Chem. High Throughput Screen., 2015, 18(7), 658-672.
[121]
Svetnik, V.; Liaw, A.; Tong, C.; Wang, T. Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules.In multiple classifier systems: 5th international workshop proceedings; Roli, F., Kittler, J., Windeatt, T., Eds.; Lecture Notes in Computer Science; Springer, Berlin, Heidelberg, 2004; Vol. 3077, pp 334-343.
[122]
Jorissen, R.N.; Gilson, M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model., 2005, 45(3), 549-561.
[123]
Li, Y.; Wang, Y.; Ding, J.; Wang, Y.; Chang, Y.; Zhang, S. In silico prediction of androgenic and nonandrogenic compounds using random forest. QSAR Comb. Sci., 2009, 28(4), 396-405.
[124]
Ma, X.H.; Wang, R.; Yang, S.Y.; Li, Z.R.; Xue, Y.; Wei, Y.C.; Low, B.C.; Chen, Y.Z. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. J. Chem. Inf. Model., 2008, 48(6), 1227-1237.
[125]
Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175.
[126]
Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res., 2017, 50(2), 302-309.
[127]
Durrant, J.D.; McCammon, J.A. NNScore 2.0: A neural-network receptor-ligand scoring function. J. Chem. Inf. Model., 2011, 51(11), 2897-2903.
[128]
Ouyang, X.; Handoko, S.D.; Kwoh, C.K.C. Score: A simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture. J. Bioinform. Comput. Biol., 2011, 9(Suppl. 1), 1-14.
[129]
Zilian, D.; Sotriffer, C.A. SFCscore RF : A random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model., 2013, 53(8), 1923-1933.
[130]
Li, G-B.; Yang, L-L.; Wang, W-J.; Li, L-L.; Yang, S-Y. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model., 2013, 53(3), 592-600.
[131]
Ashtawy, H.M.; Mahapatra, N.R. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinforma., 2015, 12(2), 335-347.
[132]
Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5(6), 405-424.
[133]
Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model., 2010, 50(2), 205-216.
[134]
Jain, A.N.; Nicholls, A. Recommendations for evaluation of computational methods. J. Comput. Aided Mol. Des., 2008, 22(3-4), 133-139.
[135]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[136]
Bauer, M.R.; Ibrahim, T.M.; Vogel, S.M.; Boeckler, F.M. Evaluation and optimization of virtual screening workflows with dekois 2.0 – A public library of challenging docking benchmark sets. J. Chem. Inf. Model., 2013, 53(6), 1447-1462.
[137]
Jahn, A.; Hinselmann, G.; Fechner, N.; Zell, A. Optimal assignment methods for ligand-based virtual screening. J. Cheminform., 2009, 1(1), 14.
[138]
Rohrer, S.G.; Baumann, K. Maximum Unbiased Validation (MUV) data sets for virtual screening based on pubchem bioactivity data. J. Chem. Inf. Model., 2009, 49(2), 169-184.
[139]
Kurczab, R.; Smusz, S.; Bojarski, A.J.; Melville, J.; Burke, E.; Hirst, J.; Ma, X.; Wang, R.; Yang, S.; Li, Z.; Xue, Y.; Wei, Y.; Low, B.; Chen, Y.; Plewczynski, D.; Spieser, S.; Koch, U.; Bruce, C.; Melville, J.; Pickett, S.; Hirst, J.; Smusz, S.; Kurczab, R.; Bojarski, A.; Smusz, S.; Kurczab, R.; Bojarski, A.; Irwin, J.; Sterling, T.; Mysinger, M.; Bolstad, E.; Coleman, R.; Huang, N.; Shoichet, B.; Irwin, J.; Heikamp, K.; Bajorath, J.; Wang, Y.; Xiao, J.; Suzek, T.; Zhang, J.; Wang, J.; Zhou, Z.; Han, L.; Karapetyan, K.; Dracheva, S.; Shoemaker, B.; Bolton, E.; Gindulyte, A.; Bryant, S.; Gaulton, A.; Bellis, L.; Bento, A.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; Mcglinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.; Davis, J.; Goadrich, M.; Chen, B.; Harrison, R.; Papadatos, G.; Willett, P.; Wood, D.; Lewell, X.; Greenidge, P.; Stiefl, N.; Ma, X.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z.; Chen, Y.; Cannon, E.; Amini, A.; Bender, A.; Sternberg, M.; Muggleton, S.; Glen, R.; Mitchell, J.; Mitchell, T.; Aha, D.; Kibler, D.; Albert, M.; Brighton, H.; Mellish, C.; Quinlan, J.; Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.; Sheridan, R.; Feuston, B.; Breiman, L.; Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E.; Yap, C. The influence of negative training set size on machine learning-based virtual screening. J. Cheminform., 2014, 6(1), 32.
[140]
Xia, J.; Tilahun, E.L.; Reid, T-E.; Zhang, L.; Wang, X.S. Benchmarking methods and data sets for ligand enrichment assessment in virtual screening. Methods, 2015, 71, 146-157.
[141]
Réau, M.; Langenfeld, F.; Zagury, J-F.; Lagarde, N.; Montes, M. Decoys selection in benchmarking datasets: Overview and perspectives. Front. Pharmacol., 2018, 9, 11.
[143]
Hu, Y.; Stumpfe, D.; Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem., 2017, 60(4), 1238-1246.
[144]
Marchese Robinson, R.L.; Palczewska, A.; Palczewski, J.; Kidley, N. Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J. Chem. Inf. Model., 2017, 57(8), 1773-1792.
[145]
Stumpfe, D.; Bajorath, J. Similarity searching. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2), 260-282.
[146]
Wallach, I.; Heifets, A. Most ligand-based classification benchmarks reward memorization rather than generalization. J. Chem. Inf. Model., 2018, 58(5), 916-932.
[149]
Jones, N. The learning machines. Nature, 2014, 505(7482), 146-148.
[155]
Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; Bengio, Y. Theano: A CPU and GPU math expression compiler. Proceedings of the Python for Scientific Computing Conference (SciPy), 2010.
[159]
Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35(8), 1798-1828.
[160]
Bengio, Y. Learning deep architectures for AI. Found. Trends Mach. Learn., 2009, 2(1), 1-127.
[161]
Fukushima, K. Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 1980, 36(4), 193-202.
[162]
Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks.InAdvances in Neural Information Processing Systems 19; Schölkopf, B.; Platt, J.C.; Hoffman, T., Eds.; MIT Press, 2007, pp. 153-160.
[163]
Bengio, Y.; LeCun, Y. Scaling learning algorithms toward AI.In Large Scale Kernel Machines; Bottou, L., Chapelle, O., DeCoste, D., Weston, J., Eds.; MIT Press, 2007; pp. 321-359.
[164]
Hinton, G.E.; Osindero, S.; Teh, Y-W. A fast learning algorithm for deep belief nets. Neural Comput., 2006, 18(7), 1527-1554.
[165]
Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P-A. Extracting and composing robust features with denoising autoencoders.In Proceedings of the 25th international conference on Machine learning - ICML ’08; ACM Press: New York, New York, USA, 2008; pp 1096-1103
[166]
Poultney, C.; Chopra, S.; Lecun, Y. Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing Systems (NIPS 2006); MIT Press, 2006, pp. 1137-1144.
[167]
Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. Audio, Speech. Lang. Process. IEEE Trans., 2012, 20(1), 30-42.
[168]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K. Q., Eds.; Curran Associates, Inc., 2012; pp 1097-1105
[169]
Collobert, R.; Weston, J. A unified architecture for natural language processing. 2008.
[170]
Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011) Gordon, G., Dunson, D., Dudík, M., Eds.; Proceedings of Machine Learning Research; PMLR: Fort Lauderdale, FL, USA,, 2011, Vol. 15, pp. 315-323.
[171]
Deng, L.; Yu, D. Deep learning: Methods and applications. Found.
Trends Signal Process. 2014, 7 (3-4), 197-387.
[172]
Kaggle - Merck Molecular Activity Challenge
https://www.kaggle.com/c/MerckActivity (Accessed Oct 7, 2018).
[173]
Dahl, G.E.; Jaitly, N.; Salakhutdinov, R. Multi-Task neural networks
for QSAR predictions. arXiv:1406.1231 [stat.ML] 2014.
https://arxiv.org/abs/1406.1231/
[174]
Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep
neural nets as a method for quantitative structure-activity relationships.
J. Chem. Inf. Model., 2015, 55(2), 263-274.
[175]
Ghasemi, F.; Fassihi, A.; Pérez-Sánchez, H.; Mehri Dehnavi, A. The role of different sampling methods in improving biological activity prediction using deep belief network. J. Comput. Chem., 2017, 38(4), 195-203.
[176]
Ghasemi, F.; Mehridehnavi, A.; Fassihi, A.; Pérez-Sánchez, H. Deep neural network in QSAR studies using deep belief network. Appl. Soft Comput., 2018, 62, 251-258.
[179]
Xu, Y.; Ma, J.; Liaw, A.; Sheridan, R.P.; Svetnik, V. Demystifying multi-task deep neural networks for quantitative structure-activity relationships. J. Chem. Inf. Model., 2017, 57(10), 2490-2504.
[180]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci., 2016, 3, 80.
[181]
Lenselink, E.B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; Van Vlijmen, H.W.T.; Kowalczyk, W.; Ijzerman, A.P.; Van Westen, G.J.P. Beyond the hype: Deep neural networks outperform established methods using a chembl bioactivity benchmark set. J. Cheminform., 2017, 9(1), 45.
[182]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res., 2012, 40(D1), D1100-D1107.
[183]
Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm., 2016, 13(7), 2524-2530.
[184]
Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform., 2017, 9(1), 42.
[185]
Ramsundar, B.; Liu, B.; Wu, Z.; Verras, A.; Tudor, M.; Sheridan, R.P.; Pande, V. Is multitask deep learning practical for pharma? J. Chem. Inf. Model., 2017, 57(8), 2068-2076.
[186]
Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X-Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J., 2018, 20(3), 58.
[187]
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model., 2013, 53(7), 1563-1575.
[188]
Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep learning for drug-induced liver injury. J. Chem. Inf. Model., 2015, 55(10), 2085-2093.
[189]
Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A Survey of deep neural network architectures and their applications. Neurocomputing, 2017, 234, 11-26.
[190]
Hughes, T.B.; Miller, G.P.; Swamidass, S.J. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent. Sci., 2015, 1(4), 168-180.
[191]
Hughes, T.B.; Le Dang, N.; Miller, G.P.; Swamidass, S.J. Modeling reactivity to biological macromolecules with a deep multitask network. ACS Cent. Sci., 2016, 2(8), 529-537.
[192]
Duvenaud, D.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.;
Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks
on graphs for learning molecular fingerprints. In Proceedings of the
28th International Conference on Neural Information Processing
Systems; MIT Press, 2015; pp 2224-2232.
[193]
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J. Comput. Aided Mol. Des., 2016, 30(8), 595-608.
[194]
Coley, C.W.; Barzilay, R.; Green, W.H.; Jaakkola, T.S.; Jensen, K.F. Convolutional embedding of attributed molecular graphs for Physical Property Prediction. J. Chem. Inf. Model., 2017, 57(8), 1757-1772.
[195]
Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685.
[196]
Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685.
[198]
Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D.R. Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model., 2017, 57(4), 942-957.
[200]
Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein-ligand absolute binding affinity prediction via 3d-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[201]
Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics, 2018, 34(21), 3666-3674.
[204]
Cang, Z.; Wei, G-W. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLOS Comput. Biol., 2017, 13(7), e1005690.
[205]
Cang, Z.; Mu, L.; Wei, G-W.; Yin, C.; He, R.; Yau, S. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLOS Comput. Biol., 2018, 14(1), e1005929.
[206]
Pereira, J.C.; Caffarena, E.R.; dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506.
[209]
Goh, G.B.; Siegel, C.; Vishnu, A.; Hodas, N.O.; Baker, N. Chemception:
A deep neural network with minimal chemistry knowledge
matches the performance of expert-developed QSAR/QSPR models.
2017 arXiv:1706.06689 >
[213]
Jørgensen, P.B.; Schmidt, M.N.; Winther, O. Deep generative models for molecular science. Mol. Inform., 2018, 37(1-2), 1700133.
[214]
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep Learning in Drug Discovery. Drug Discov. Today, 2018, 23(6), 1241-1250.
[215]
Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P-M.; Zietz, M.; Hoffman, M.M.; Xie, W.; Rosen, G.L.; Lengerich, B.J.; Israeli, J.; Lanchantin, J.; Woloszynek, S.; Carpenter, A.E.; Shrikumar, A.; Xu, J.; Cofer, E.M.; Lavender, C.A.; Turaga, S.C.; Alexandari, A.M.; Lu, Z.; Harris, D.J.; DeCaprio, D.; Qi, Y.; Kundaje, A.; Peng, Y.; Wiley, L.K.; Segler, M.H.S.; Boca, S.M.; Swamidass, S.J.; Huang, A.; Gitter, A.; Greene, C.S. Opportunities and Obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 2018, 15(141), 20170387.
[216]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A.; Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A.; Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[217]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[218]
Kaneko, T. Generative adversarial networks: Foundations and applications. Acoust. Sci. Technol., 2018, 39(3), 189-197.
[219]
Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. DruGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm., 2017, 14(9), 3098-3104.
[220]
Graves, A. Generating Sequences With Recurrent Neural
Networks. arXiv:1308.0850v5 [cs.NE] 2013.
https://arxiv.org/abs/1308.0850v5
[221]
Bowman, S.R.; Vilnis, L.; Vinyals, O.; Dai, A.M.; Jozefowicz, R.;
Bengio, S. Generating Sentences from a Continuous Space.
arXiv:1511.06349v4 [cs.LG] 2015.
https://arxiv.org/abs/1511.06349v4
[222]
Xie, Z. Neural Text Generation: A Practical Guide.
arXiv:1711.09534 [cs.CL] 2017. https://arxiv.org/abs/1711.09534
[223]
Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276.
[224]
Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of generative autoencoder in de novo molecular design. Mol. Inform., 2018, 37(1-2), 1700123.
[226]
Polykovskiy, D.; Zhebrak, A.; Vetrov, D.; Ivanenkov, Y.; Aladinskiy, V.; Mamoshina, P.; Bozdaganyan, M.; Aliper, A.; Zhavoronkov, A.; Kadurin, A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm., 2018, 15(10), 4398-4405.
[228]
Yuan, W.; Jiang, D.; Nambiar, D.K.; Liew, L.P.; Hay, M.P.; Bloomstein, J.; Lu, P.; Turner, B.; Le, Q-T.; Tibshirani, R.; Khatri, P.; Moloney, M.G.; Koong, A.C. Chemical space mimicry for drug discovery. J. Chem. Inf. Model., 2017, 57(4), 875-882.
[229]
Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focussed molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131.
[230]
Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative recurrent networks for de novo drug design. Mol. Inform., 2018, 37(1-2), 1700111.
[231]
Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo design of bioactive small molecules by artificial intelligence. Mol. Inform., 2018, 37(1-2), 1700153.
[234]
Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform., 2017, 9(1), 48.
[236]
Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.; Aladinskaya, A.V.; Aliper, A.; Zhavoronkov, A. Adversarial threshold neural computer for molecular de novo design. Mol. Pharm., 2018, 15(10), 4386-4397.
[237]
Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204.
[239]
Li, Y.; Zhang, L.; Liu, Z. Multi-Objective de novo drug design with conditional graph generative model. J. Cheminform., 2018, 10(1), 33.
[241]
Tiikkainen, P.; Markt, P.; Wolber, G.; Kirchmair, J.; Distinto, S.; Poso, A.; Kallioniemi, O. Critical comparison of virtual screening methods against the MUV data set. J. Chem. Inf. Model., 2009, 49(10), 2168-2178.
[242]
Huang, Q.; Kang, H.; Zhang, D.; Sheng, Z.; Liu, Q.; Zhu, R.; Cao, Z. Comparison of ligand-, target structure-, and protein-ligand interaction fingerprint-based virtual screening methods. Acta Chimi. Sin., 2011, 69(5), 515-522.
[243]
Niinivehmas, S.P.; Virtanen, S.I.; Lehtonen, J.V.; Postila, P.A.; Pentikäinen, O.T. Comparison of virtual high-throughput screening methods for the identification of phosphodiesterase-5 inhibitors. J. Chem. Inf. Model., 2011, 51(6), 1353-1363.
[244]
Ramasamy, T.; Selvam, C. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets. Bioorg. Med. Chem. Lett., 2015, 25(20), 4632-4636.
[245]
Klebe, G. Virtual ligand screening: Strategies, perspectives and limitations. Drug Discov. Today, 2006, 11(13-14), 580-594.
[246]
Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K. Recognizing pitfalls in virtual screening: A critical review. J. Chem. Inf. Model., 2012, 52(4), 867-881.
[247]
Chen, Y-C. Beware of docking! Trends Pharmacol. Sci., 2015, 36(2), 78-95.
[248]
Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search in virtual screening. Methods, 2015, 71, 58-63.
[249]
Spyrakis, F.; Cavasotto, C.N. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch. Biochem. Biophys., 2015, 583, 105-119.
[250]
Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo Vadis, Virtual Screening? A comprehensive survey of prospective applications. J. Med. Chem., 2010, 53(24), 8461-8467.
[251]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[252]
Lavecchia, A. Machine-Learning approaches in drug discovery: Methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
[254]
Maggiora, G.M. On outliers and activity cliffs-why QSAR often disappoints. J. Chem. Inf. Model., 2006, 46(4), 1535.
[255]
Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem., 2017, 38(16), 1291-1307.
[256]
Perez-Sanchez, H.; Wenzel, W. Optimization methods for virtual screening on novel computational architectures. Curr. Comput. Aided-Drug Des., 2011, 7(1), 44-52.
[257]
Pastur-Romay, L.; Cedrón, F.; Pazos, A.; Porto-Pazos, A. Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications. Int. J. Mol. Sci., 2016, 17(8), 1313.