Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

From Levinthal’s Paradox to the Effects of Cell Environmental Perturbation on Protein Folding

Author(s): Juan Zeng* and Zunnan Huang*

Volume 26, Issue 42, 2019

Page: [7537 - 7554] Pages: 18

DOI: 10.2174/0929867325666181017160857

Price: $65

Abstract

Background: The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal’s paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding.

Methods: In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal’s paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding.

Results: The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature.

Conclusion: This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.

Keywords: Protein folding, free energy landscape, crowded cell-like environment, environmental temperature, phosphorylation, glycosylation and acetylation.

[1]
Katritch, V.; Cherezov, V.; Stevens, R.C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 531-556.
[http://dx.doi.org/10.1146/annurev-pharmtox-032112-135923] [PMID: 23140243]
[2]
Dunker, A.K.; Silman, I.; Uversky, V.N.; Sussman, J.L. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol., 2008, 18(6), 756-764.
[http://dx.doi.org/10.1016/j.sbi.2008.10.002] [PMID: 18952168]
[3]
Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Shaw, D.E. How fast-folding proteins fold. Science, 2011, 334(6055), 517-520.
[http://dx.doi.org/10.1126/science.1208351] [PMID: 22034434]
[4]
Huang, Z. Design of new molecular dynamics global minimum search protocols for mapping energy landscapes and conformations of folded polypeptides and mini-proteins, 2005.
[5]
Zeng, J.; Li, Y.; Zhang, J.Z.H.; Mei, Y. Examination of the quality of various force fields and solvation models for the equilibrium simulations of GA88 and GB88. J. Mol. Model., 2016, 22(8), 177.
[http://dx.doi.org/10.1007/s00894-016-3027-8] [PMID: 27392746]
[6]
Levinthal, C. How to fold graciously. Mossbauer Spectroscopy in Biological Systems; University of Illinois Press. Urbana, 1969, 67(41), 22-26.
[7]
Karplus, M. The Levinthal paradox: yesterday and today. Fold. Des., 1997, 2(4), S69-S75.
[http://dx.doi.org/10.1016/S1359-0278(97)00067-9] [PMID: 9269572]
[8]
Zwanzig, R.; Szabo, A.; Bagchi, B. Levinthal’s paradox. Proc. Natl. Acad. Sci. USA, 1992, 89(1), 20-22.
[http://dx.doi.org/10.1073/pnas.89.1.20] [PMID: 1729690]
[9]
Dill, K.A.; Chan, H.S. From Levinthal to pathways to funnels. Nat. Struct. Biol., 1997, 4(1), 10-19.
[http://dx.doi.org/10.1038/nsb0197-10] [PMID: 8989315]
[10]
Naganathan, A.N.; Muñoz, V. Scaling of folding times with protein size. J. Am. Chem. Soc., 2005, 127(2), 480-481.
[http://dx.doi.org/10.1021/ja044449u] [PMID: 15643845]
[11]
Wolynes, P. BIOMOLECULAR FOLDING. Moments of excitement. Science, 2016, 352(6282), 150-151.
[http://dx.doi.org/10.1126/science.aaf6626] [PMID: 27124442]
[12]
Maity, H.; Maity, M.; Krishna, M.M.; Mayne, L.; Englander, S.W. Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA, 2005, 102(13), 4741-4746.
[http://dx.doi.org/10.1073/pnas.0501043102] [PMID: 15774579]
[13]
Bai, Y.; Sosnick, T.R.; Mayne, L.; Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science, 1995, 269(5221), 192-197.
[http://dx.doi.org/10.1126/science.7618079] [PMID: 7618079]
[14]
Englander, S.W.; Mayne, L. The case for defined protein folding pathways. Proc. Natl. Acad. Sci. USA, 2017, 114(31), 8253-8258.
[http://dx.doi.org/10.1073/pnas.1706196114] [PMID: 28630329]
[15]
Baldwin, R.L. Clash between energy landscape theory and foldon-dependent protein folding. Proc. Natl. Acad. Sci. USA, 2017, 114(32), 8442-8443.
[http://dx.doi.org/10.1073/pnas.1709133114] [PMID: 28747526]
[16]
Eaton, W.A.; Wolynes, P.G. Theory, simulations, and experiments show that proteins fold by multiple pathways. Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9759-E9760.
[http://dx.doi.org/10.1073/pnas.1716444114] [PMID: 29087352]
[17]
Englander, S.W.; Mayne, L. Reply to Eaton and Wolynes: How do proteins fold? Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9761-E9762.
[http://dx.doi.org/10.1073/pnas.1716929114] [PMID: 29087353]
[18]
Socolich, M.; Lockless, S.W.; Russ, W.P.; Lee, H.; Gardner, K.H.; Ranganathan, R. Evolutionary information for specifying a protein fold. Nature, 2005, 437(7058), 512-518.
[http://dx.doi.org/10.1038/nature03991] [PMID: 16177782]
[19]
de Juan, D.; Pazos, F.; Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet., 2013, 14(4), 249-261.
[http://dx.doi.org/10.1038/nrg3414] [PMID: 23458856]
[20]
Marks, D.S.; Colwell, L.J.; Sheridan, R.; Hopf, T.A.; Pagnani, A.; Zecchina, R.; Sander, C. Protein 3D structure computed from evolutionary sequence variation. PLoS One, 2011, 6(12)e28766
[http://dx.doi.org/10.1371/journal.pone.0028766] [PMID: 22163331]
[21]
Mirny, L.A.; Abkevich, V.I.; Shakhnovich, E.I. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 4976-4981.
[http://dx.doi.org/10.1073/pnas.95.9.4976] [PMID: 9560213]
[22]
Theillet, F.X.; Binolfi, A.; Frembgen-Kesner, T.; Hingorani, K.; Sarkar, M.; Kyne, C.; Li, C.; Crowley, P.B.; Gierasch, L.; Pielak, G.J.; Elcock, A.H.; Gershenson, A.; Selenko, P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev., 2014, 114(13), 6661-6714.
[http://dx.doi.org/10.1021/cr400695p] [PMID: 24901537]
[23]
Zhou, H.X. Influence of crowded cellular environments on protein folding, binding, and oligomerization: biological consequences and potentials of atomistic modeling. FEBS Lett., 2013, 587(8), 1053-1061.
[http://dx.doi.org/10.1016/j.febslet.2013.01.064] [PMID: 23395796]
[24]
Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci., 2014, 15(12), 23090-23140.
[http://dx.doi.org/10.3390/ijms151223090] [PMID: 25514413]
[25]
Zhou, Z.; Fan, J.B.; Zhu, H.L.; Shewmaker, F.; Yan, X.; Chen, X.; Chen, J.; Xiao, G.F.; Guo, L.; Liang, Y. Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding. J. Biol. Chem., 2009, 284(44), 30148-30158.
[http://dx.doi.org/10.1074/jbc.M109.002832] [PMID: 19748895]
[26]
Reid, R.E.; Gariépy, J.; Saund, A.K.; Hodges, R.S. Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J. Biol. Chem., 1981, 256(6), 2742-2751.
[PMID: 7204374]
[27]
Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356), 324-332.
[http://dx.doi.org/10.1038/nature10317] [PMID: 21776078]
[28]
Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem., 2013, 82, 323-355.
[http://dx.doi.org/10.1146/annurev-biochem-060208-092442] [PMID: 23746257]
[29]
Berezovsky, I.N.; Shakhnovich, E.I. Physics and evolution of thermophilic adaptation. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12742-12747.
[http://dx.doi.org/10.1073/pnas.0503890102] [PMID: 16120678]
[30]
Karve, T.M.; Cheema, A.K. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J. Amino Acids, 2011, 2011207691
[http://dx.doi.org/10.4061/2011/207691] [PMID: 22312457]
[31]
Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 2011, 1, 90.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[32]
Scheraga, H.A.; Khalili, M.; Liwo, A. Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem., 2007, 58, 57-83.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104614] [PMID: 17034338]
[33]
Beck, D.A.; Daggett, V. Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods, 2004, 34(1), 112-120.
[http://dx.doi.org/10.1016/j.ymeth.2004.03.008] [PMID: 15283920]
[34]
de Azevedo, W.F. Jr. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[35]
Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, 2015, 1850(5), 872-877.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.019] [PMID: 25450171]
[36]
Ellis, R.J.; Hartl, F.U. Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol., 1999, 9(1), 102-110.
[http://dx.doi.org/10.1016/S0959-440X(99)80013-X] [PMID: 10047582]
[37]
Ellis, R.J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol., 2001, 11(1), 114-119.
[http://dx.doi.org/10.1016/S0959-440X(00)00172-X] [PMID: 11179900]
[38]
Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature, 1992, 355(6355), 33-45.
[http://dx.doi.org/10.1038/355033a0] [PMID: 1731198]
[39]
Ebbinghaus, S.; Gruebele, M. Protein folding landscapes in the living cell. J. Phys. Chem. Lett., 2011, 2(4), 314-319.
[http://dx.doi.org/10.1021/jz101729z]
[40]
Zhou, H.X.; Qin, S. Simulation and modeling of crowding effects on the thermodynamic and kinetic properties of proteins with atomic details. Biophys. Rev., 2013, 5(2), 207-215.
[http://dx.doi.org/10.1007/s12551-013-0101-7] [PMID: 23710260]
[41]
Zhou, H.X. Protein folding and binding in confined spaces and in crowded solutions. J. Mol. Recognit., 2004, 17(5), 368-375.
[http://dx.doi.org/10.1002/jmr.711] [PMID: 15362094]
[42]
Qin, S.; Zhou, H.X. Generalized fundamental measure theory for atomistic modeling of macromolecular crowding. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2010, 81(3 Pt 1)031919
[http://dx.doi.org/10.1103/PhysRevE.81.031919] [PMID: 20365782]
[43]
Qin, S.; Cai, L.; Zhou, H.X. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding. Phys. Biol., 2012, 9(6)066008
[http://dx.doi.org/10.1088/1478-3975/9/6/066008] [PMID: 23197255]
[44]
Qin, S.; Minh, D.D.; McCammon, J.A.; Zhou, H.X. Method to predict crowding effects by postprocessing molecular dynamics trajectories: application to the flap dynamics of HIV-1 protease. J. Phys. Chem. Lett., 2010, 1(1), 107-110.
[http://dx.doi.org/10.1021/jz900023w] [PMID: 20228897]
[45]
Ai, X.; Zhou, Z.; Bai, Y.; Choy, W.Y. 15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions. J. Am. Chem. Soc., 2006, 128(12), 3916-3917.
[http://dx.doi.org/10.1021/ja057832n] [PMID: 16551092]
[46]
Tjong, H.; Zhou, H.X. The folding transition-state ensemble of a four-helix bundle protein: helix propensity as a determinant and macromolecular crowding as a probe. Biophys. J., 2010, 98(10), 2273-2280.
[http://dx.doi.org/10.1016/j.bpj.2010.01.052] [PMID: 20483336]
[47]
Batra, J.; Xu, K.; Qin, S.; Zhou, H.X. Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys. J., 2009, 97(3), 906-911.
[http://dx.doi.org/10.1016/j.bpj.2009.05.032] [PMID: 19651049]
[48]
Phillip, Y.; Harel, M.; Khait, R.; Qin, S.; Zhou, H.X.; Schreiber, G. Contrasting factors on the kinetic path to protein complex formation diminish the effects of crowding agents. Biophys. J., 2012, 103(5), 1011-1019.
[http://dx.doi.org/10.1016/j.bpj.2012.08.009] [PMID: 23009850]
[49]
Cheung, M.S.; Klimov, D.; Thirumalai, D. Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc. Natl. Acad. Sci. USA, 2005, 102(13), 4753-4758.
[http://dx.doi.org/10.1073/pnas.0409630102] [PMID: 15781864]
[50]
Minh, D.D.; Chang, C.E.; Trylska, J.; Tozzini, V.; McCammon, J.A. The influence of macromolecular crowding on HIV-1 protease internal dynamics. J. Am. Chem. Soc., 2006, 128(18), 6006-6007.
[http://dx.doi.org/10.1021/ja060483s] [PMID: 16669648]
[51]
Mittal, J.; Best, R.B. Dependence of protein folding stability and dynamics on the density and composition of macromolecular crowders. Biophys. J., 2010, 98(2), 315-320.
[http://dx.doi.org/10.1016/j.bpj.2009.10.009] [PMID: 20338853]
[52]
Homouz, D.; Perham, M.; Samiotakis, A.; Cheung, M.S.; Wittung-Stafshede, P. Crowded, cell-like environment induces shape changes in aspherical protein. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11754-11759.
[http://dx.doi.org/10.1073/pnas.0803672105] [PMID: 18697933]
[53]
Dhar, A.; Samiotakis, A.; Ebbinghaus, S.; Nienhaus, L.; Homouz, D.; Gruebele, M.; Cheung, M.S. Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc. Natl. Acad. Sci. USA, 2010, 107(41), 17586-17591.
[http://dx.doi.org/10.1073/pnas.1006760107] [PMID: 20921368]
[54]
Charlton, L.M.; Barnes, C.O.; Li, C.; Orans, J.; Young, G.B.; Pielak, G.J. Residue-level interrogation of macromolecular crowding effects on protein stability. J. Am. Chem. Soc., 2008, 130(21), 6826-6830.
[http://dx.doi.org/10.1021/ja8005995] [PMID: 18459780]
[55]
Miklos, A.C.; Sarkar, M.; Wang, Y.; Pielak, G.J. Protein crowding tunes protein stability. J. Am. Chem. Soc., 2011, 133(18), 7116-7120.
[http://dx.doi.org/10.1021/ja200067p] [PMID: 21506571]
[56]
Wang, Y.; Sarkar, M.; Smith, A.E.; Krois, A.S.; Pielak, G.J. Macromolecular crowding and protein stability. J. Am. Chem. Soc., 2012, 134(40), 16614-16618.
[http://dx.doi.org/10.1021/ja305300m] [PMID: 22954326]
[57]
Feig, M.; Sugita, Y. Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. J. Phys. Chem. B, 2012, 116(1), 599-605.
[http://dx.doi.org/10.1021/jp209302e] [PMID: 22117862]
[58]
Szilágyi, A.; Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 2000, 8(5), 493-504.
[http://dx.doi.org/10.1016/S0969-2126(00)00133-7] [PMID: 10801491]
[59]
Goldstein, R.A. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci., 2007, 16(9), 1887-1895.
[http://dx.doi.org/10.1110/ps.072947007] [PMID: 17766385]
[60]
Gianese, G.; Argos, P.; Pascarella, S. Structural adaptation of enzymes to low temperatures. Protein Eng., 2001, 14(3), 141-148.
[http://dx.doi.org/10.1093/protein/14.3.141] [PMID: 11342709]
[61]
D’Amico, S.; Marx, J.C.; Gerday, C.; Feller, G. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem., 2003, 278(10), 7891-7896.
[http://dx.doi.org/10.1074/jbc.M212508200] [PMID: 12511577]
[62]
Meruelo, A.D.; Han, S.K.; Kim, S.; Bowie, J.U. Structural differences between thermophilic and mesophilic membrane proteins. Protein Sci., 2012, 21(11), 1746-1753.
[http://dx.doi.org/10.1002/pro.2157] [PMID: 23001966]
[63]
Georlette, D.; Blaise, V.; Collins, T.; D’Amico, S.; Gratia, E.; Hoyoux, A.; Marx, J.C.; Sonan, G.; Feller, G.; Gerday, C. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev., 2004, 28(1), 25-42.
[http://dx.doi.org/10.1016/j.femsre.2003.07.003] [PMID: 14975528]
[64]
Papaleo, E.; Pasi, M.; Riccardi, L.; Sambi, I.; Fantucci, P.; De Gioia, L. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett., 2008, 582(6), 1008-1018.
[http://dx.doi.org/10.1016/j.febslet.2008.02.048] [PMID: 18307991]
[65]
Casanueva, A.; Tuffin, M.; Cary, C.; Cowan, D.A. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol., 2010, 18(8), 374-381.
[http://dx.doi.org/10.1016/j.tim.2010.05.002] [PMID: 20646925]
[66]
Mereghetti, P.; Riccardi, L.; Brandsdal, B.O.; Fantucci, P.; De Gioia, L.; Papaleo, E. Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J. Phys. Chem. B, 2010, 114(22), 7609-7619.
[http://dx.doi.org/10.1021/jp911523h] [PMID: 20518574]
[67]
Åqvist, J.; Isaksen, G.V.; Brandsdal, B.O. Computation of enzyme cold adaptation. Nat. Rev.Chem., 2017, 1, 0051.
[http://dx.doi.org/10.1038/s41570-017-0051]
[68]
Bjelic, S.; Brandsdal, B.O.; Aqvist, J. Cold adaptation of enzyme reaction rates. Biochemistry, 2008, 47(38), 10049-10057.
[http://dx.doi.org/10.1021/bi801177k] [PMID: 18759500]
[69]
Isaksen, G.V.; Åqvist, J.; Brandsdal, B.O. Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLOS Comput. Biol., 2014, 10(8) e1003813
[http://dx.doi.org/10.1371/journal.pcbi.1003813] [PMID: 25165981]
[70]
Zanphorlin, L.M.; de Giuseppe, P.O.; Honorato, R.V.; Tonoli, C.C.; Fattori, J.; Crespim, E.; de Oliveira, P.S.; Ruller, R.; Murakami, M.T. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci. Rep., 2016, 6, 23776.
[http://dx.doi.org/10.1038/srep23776] [PMID: 27029646]
[71]
Leiros, H.K.; Willassen, N.P.; Smalås, A.O. Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur. J. Biochem., 2000, 267(4), 1039-1049.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01098.x] [PMID: 10672012]
[72]
Kumar, S.; Nussinov, R. How do thermophilic proteins deal with heat? Cell. Mol. Life Sci., 2001, 58(9), 1216-1233.
[http://dx.doi.org/10.1007/PL00000935] [PMID: 11577980]
[73]
Olufsen, M.; Smalås, A.O.; Moe, E.; Brandsdal, B.O. Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J. Biol. Chem., 2005, 280(18), 18042-18048.
[http://dx.doi.org/10.1074/jbc.M500948200] [PMID: 15749696]
[74]
Olufsen, M.; Brandsdal, B.O.; Smalås, A.O. Comparative unfolding studies of psychrophilic and mesophilic uracil DNA glycosylase: MD simulations show reduced thermal stability of the cold-adapted enzyme. J. Mol. Graph. Model., 2007, 26(1), 124-134.
[http://dx.doi.org/10.1016/j.jmgm.2006.10.003] [PMID: 17134924]
[75]
Michetti, D.; Brandsdal, B.O.; Bon, D.; Isaksen, G.V.; Tiberti, M.; Papaleo, E. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations. PLoS One, 2017, 12(2) e0169586
[http://dx.doi.org/10.1371/journal.pone.0169586] [PMID: 28192428]
[76]
Adekoya, O.A.; Helland, R.; Willassen, N.P.; Sylte, I. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins, 2006, 62(2), 435-449.
[http://dx.doi.org/10.1002/prot.20773] [PMID: 16294337]
[77]
Papaleo, E.; Riccardi, L.; Villa, C.; Fantucci, P.; De Gioia, L. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family. Biochim. Biophys. Acta, 2006, 1764(8), 1397-1406.
[http://dx.doi.org/10.1016/j.bbapap.2006.06.005] [PMID: 16920043]
[78]
Papaleo, E.; Olufsen, M.; De Gioia, L.; Brandsdal, B.O. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. J. Mol. Graph. Model., 2007, 26(1), 93-103.
[http://dx.doi.org/10.1016/j.jmgm.2006.09.012] [PMID: 17084098]
[79]
Papaleo, E.; Pasi, M.; Tiberti, M.; De Gioia, L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One, 2011, 6(9) e24214
[http://dx.doi.org/10.1371/journal.pone.0024214] [PMID: 21915299]
[80]
Parvizpour, S.; Razmara, J.; Ramli, A.N.; Md Illias, R.; Shamsir, M.S. Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12. J. Comput. Aided Mol. Des., 2014, 28(6), 685-698.
[http://dx.doi.org/10.1007/s10822-014-9751-1] [PMID: 24849507]
[81]
Kim, M.K.; An, Y.J.; Song, J.M.; Jeong, C.S.; Kang, M.H.; Kwon, K.K.; Lee, Y.H.; Cha, S.S. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Proteins, 2014, 82(11), 3217-3223.
[http://dx.doi.org/10.1002/prot.24655] [PMID: 25082572]
[82]
Gatti-Lafranconi, P.; Natalello, A.; Rehm, S.; Doglia, S.M.; Pleiss, J.; Lotti, M. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. J. Mol. Biol., 2010, 395(1), 155-166.
[http://dx.doi.org/10.1016/j.jmb.2009.10.026] [PMID: 19850050]
[83]
Sigtryggsdóttir, A.R.; Papaleo, E.; Thorbjarnardóttir, S.H.; Kristjánsson, M.M. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics. Biochim. Biophys. Acta, 2014, 1844(4), 705-712.
[http://dx.doi.org/10.1016/j.bbapap.2014.02.009] [PMID: 24561657]
[84]
Xie, B.B.; Bian, F.; Chen, X.L.; He, H.L.; Guo, J.; Gao, X.; Zeng, Y.X.; Chen, B.; Zhou, B.C.; Zhang, Y.Z. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J. Biol. Chem., 2009, 284(14), 9257-9269.
[http://dx.doi.org/10.1074/jbc.M808421200] [PMID: 19181663]
[85]
Kovacic, F.; Mandrysch, A.; Poojari, C.; Strodel, B.; Jaeger, K.E. Structural features determining thermal adaptation of esterases. Protein Eng. Des. Sel., 2016, 29(2), 65-76.
[http://dx.doi.org/10.1093/protein/gzv061] [PMID: 26647400]
[86]
Jaenicke, R.; Böhm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol., 1998, 8(6), 738-748.
[http://dx.doi.org/10.1016/S0959-440X(98)80094-8] [PMID: 9914256]
[87]
Schneider, D.; Liu, Y.; Gerstein, M.; Engelman, D.M. Thermostability of membrane protein helix-helix interaction elucidated by statistical analysis. FEBS Lett., 2002, 532(1-2), 231-236.
[http://dx.doi.org/10.1016/S0014-5793(02)03687-6] [PMID: 12459496]
[88]
Vetriani, C.; Maeder, D.L.; Tolliday, N.; Yip, K.S.; Stillman, T.J.; Britton, K.L.; Rice, D.W.; Klump, H.H.; Robb, F.T. Protein thermostability above 100 degreesC: a key role for ionic interactions. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12300-12305.
[http://dx.doi.org/10.1073/pnas.95.21.12300] [PMID: 9770481]
[89]
Querol, E.; Perez-Pons, J.A.; Mozo-Villarias, A. Analysis of protein conformational characteristics related to thermostability. Protein Eng., 1996, 9(3), 265-271.
[http://dx.doi.org/10.1093/protein/9.3.265] [PMID: 8736493]
[90]
Thompson, M.J.; Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol., 1999, 290(2), 595-604.
[http://dx.doi.org/10.1006/jmbi.1999.2889] [PMID: 10390356]
[91]
Spector, S.; Wang, M.; Carp, S.A.; Robblee, J.; Hendsch, Z.S.; Fairman, R.; Tidor, B.; Raleigh, D.P. Rational modification of protein stability by the mutation of charged surface residues. Biochemistry, 2000, 39(5), 872-879.
[http://dx.doi.org/10.1021/bi992091m] [PMID: 10653630]
[92]
Wyss, D.F.; Choi, J.S.; Li, J.; Knoppers, M.H.; Willis, K.J.; Arulanandam, A.R.; Smolyar, A.; Reinherz, E.L.; Wagner, G. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science, 1995, 269(5228), 1273-1278.
[http://dx.doi.org/10.1126/science.7544493] [PMID: 7544493]
[93]
Gianazza, E.; Parravicini, C.; Primi, R.; Miller, I.; Eberini, I. In silico prediction and characterization of protein post-translational modifications. J. Proteomics, 2016, 134, 65-75.
[http://dx.doi.org/10.1016/j.jprot.2015.09.026] [PMID: 26436211]
[94]
Hurley, J.H.; Dean, A.M.; Thorsness, P.E.; Koshland, D.E. Jr.; Stroud, R.M. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J. Biol. Chem., 1990, 265(7), 3599-3602.
[http://dx.doi.org/10.2210/pdb4icd/pdb] [PMID: 2406256]
[95]
Tholey, A.; Lindemann, A.; Kinzel, V.; Reed, J. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study. Biophys. J., 1999, 76(1 Pt 1), 76-87.
[http://dx.doi.org/10.1016/S0006-3495(99)77179-1] [PMID: 9876124]
[96]
Johnson, L.N.; Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev., 2001, 101(8), 2209-2242.
[http://dx.doi.org/10.1021/cr000225s] [PMID: 11749371]
[97]
Guo, Y.T.; Li, Y.M.; Zhu, Z.T.; Zhao, Y.F. Effect of the phosphate group with different negative charges on the conformation of phosphorylated Ser/Thr-Pro motif. Int. J. Pept. Res. Ther., 2005, 11(2), 159-165.
[http://dx.doi.org/10.1007/s10989-005-4710-2]
[98]
Shen, T.; Zong, C.; Hamelberg, D.; McCammon, J.A.; Wolynes, P.G. The folding energy landscape and phosphorylation: modeling the conformational switch of the NFAT regulatory domain. FASEB J., 2005, 19(11), 1389-1395.
[http://dx.doi.org/10.1096/fj.04-3590hyp] [PMID: 16126906]
[99]
Bielska, A.A.; Zondlo, N.J. Hyperphosphorylation of tau induces local polyproline II helix. Biochemistry, 2006, 45(17), 5527-5537.
[http://dx.doi.org/10.1021/bi052662c] [PMID: 16634634]
[100]
Rezaei-Ghaleh, N.; Amininasab, M.; Kumar, S.; Walter, J.; Zweckstetter, M. Phosphorylation modifies the molecular stability of β-amyloid deposits. Nat. Commun., 2016, 7, 11359.
[http://dx.doi.org/10.1038/ncomms11359] [PMID: 27072999]
[101]
Zacarías-Lara, O.J.; Correa-Basurto, J.; Bello, M. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations. Biopolymers, 2016, 105(7), 393-413.
[http://dx.doi.org/10.1002/bip.22839] [PMID: 27016043]
[102]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F. Jr. Protein kinases as targets for antiparasitic chemotherapy drugs. Curr. Drug Targets, 2007, 8(3), 389-398.
[http://dx.doi.org/10.2174/138945007780058979] [PMID: 17348832]
[103]
Stanley, N.; Esteban-Martín, S.; De Fabritiis, G. Kinetic modulation of a disordered protein domain by phosphorylation. Nat. Commun., 2014, 5, 5272.
[http://dx.doi.org/10.1038/ncomms6272] [PMID: 25348080]
[104]
Bah, A.; Vernon, R.M.; Siddiqui, Z.; Krzeminski, M.; Muhandiram, R.; Zhao, C.; Sonenberg, N.; Kay, L.E.; Forman-Kay, J.D. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature, 2015, 519(7541), 106-109.
[http://dx.doi.org/10.1038/nature13999] [PMID: 25533957]
[105]
Zeng, J.; Jiang, F.; Wu, Y.D. Mechanism of phosphorylation-induced folding of 4E-BP2 revealed by molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(1), 320-328.
[http://dx.doi.org/10.1021/acs.jctc.6b00848] [PMID: 28068774]
[106]
Bomblies, R.; Luitz, M.P.; Zacharias, M. Molecular dynamics analysis of 4E-BP2 protein fold stabilization induced by phosphorylation. J. Phys. Chem. B, 2017, 121(15), 3387-3393.
[http://dx.doi.org/10.1021/acs.jpcb.6b08597] [PMID: 27776412]
[107]
Gopi, S.; Rajasekaran, N.; Singh, A.; Ranu, S.; Naganathan, A.N. Energetic and topological determinants of a phosphorylation-induced disorder-to-order protein conformational switch. Phys. Chem. Chem. Phys., 2015, 17(41), 27264-27269.
[http://dx.doi.org/10.1039/C5CP04765J] [PMID: 26421497]
[108]
Metskas, L.A.; Rhoades, E. Folding upon phosphorylation: translational regulation by a disorder-to-order transition. Trends Biochem. Sci., 2015, 40(5), 243-244.
[http://dx.doi.org/10.1016/j.tibs.2015.02.007] [PMID: 25769422]
[109]
Zhou, C.Y.; Jiang, F.; Wu, Y.D. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. J. Phys. Chem. B, 2015, 119(3), 1035-1047.
[http://dx.doi.org/10.1021/jp5064676] [PMID: 25358113]
[110]
Jiang, F.; Zhou, C.Y.; Wu, Y.D. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. J. Phys. Chem. B, 2014, 118(25), 6983-6998.
[http://dx.doi.org/10.1021/jp5017449] [PMID: 24815738]
[111]
Zeng, J.; Jiang, F.; Wu, Y.D. Folding simulations of an α-helical hairpin motif αtα with residue-specific force fields. J. Phys. Chem. B, 2016, 120(1), 33-41.
[http://dx.doi.org/10.1021/acs.jpcb.5b09027] [PMID: 26673753]
[112]
Zeng, J.; Duan, L.; Zhang, J.Z.H.; Mei, Y. A numerically stable restrained electrostatic potential charge fitting method. J. Comput. Chem., 2013, 34(10), 847-853.
[http://dx.doi.org/10.1002/jcc.23208] [PMID: 23281029]
[113]
Zeng, J.; Jia, X.; Zhang, J.Z.H.; Mei, Y. The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. J. Comput. Chem., 2013, 34(31), 2677-2686.
[http://dx.doi.org/10.1002/jcc.23421] [PMID: 24000160]
[114]
Ji, C.; Mei, Y.; Zhang, J.Z.H. Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. Biophys. J., 2008, 95(3), 1080-1088.
[http://dx.doi.org/10.1529/biophysj.108.131110] [PMID: 18645195]
[115]
Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta, 2016, 1864(10), 1372-1401.
[http://dx.doi.org/10.1016/j.bbapap.2016.06.007] [PMID: 27296530]
[116]
Potoyan, D.A.; Papoian, G.A. Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 17857-17862.
[http://dx.doi.org/10.1073/pnas.1201805109] [PMID: 22988066]
[117]
Winogradoff, D.; Echeverria, I.; Potoyan, D.A.; Papoian, G.A. The acetylation landscape of the H4 histone tail: Disentangling the interplay between the specific and cumulative effects. J. Am. Chem. Soc., 2015, 137(19), 6245-6253.
[http://dx.doi.org/10.1021/jacs.5b00235] [PMID: 25905561]
[118]
Chang, L.; Takada, S. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations. Sci. Rep., 2016, 6, 34441.
[http://dx.doi.org/10.1038/srep34441] [PMID: 27698366]
[119]
Howe, F.S.; Boubriak, I.; Sale, M.J.; Nair, A.; Clynes, D.; Grijzenhout, A.; Murray, S.C.; Woloszczuk, R.; Mellor, J. Lysine acetylation controls local protein conformation by influencing proline isomerization. Mol. Cell, 2014, 55(5), 733-744.
[http://dx.doi.org/10.1016/j.molcel.2014.07.004] [PMID: 25127513]
[120]
Howe, F.S.; Mellor, J. Proline cis-trans isomerization is influenced by local lysine acetylation-deacetylation. Microb. Cell, 2014, 1(11), 390-392.
[http://dx.doi.org/10.15698/mic2014.11.176] [PMID: 28357218]
[121]
Wang, X.; Moore, S.C.; Laszckzak, M.; Ausió, J. Acetylation increases the alpha-helical content of the histone tails of the nucleosome. J. Biol. Chem., 2000, 275(45), 35013-35020.
[http://dx.doi.org/10.1074/jbc.M004998200] [PMID: 10938086]
[122]
Ikebe, J.; Sakuraba, S.; Kono, H. H3 histone tail conformation within the nucleosome and the impact of K14 acetylation studied using enhanced sampling simulation. PLOS Comput. Biol., 2016, 12(3) e1004788
[http://dx.doi.org/10.1371/journal.pcbi.1004788] [PMID: 26967163]
[123]
Creyghton, M.P.; Cheng, A.W.; Welstead, G.G.; Kooistra, T.; Carey, B.W.; Steine, E.J.; Hanna, J.; Lodato, M.A.; Frampton, G.M.; Sharp, P.A.; Boyer, L.A.; Young, R.A.; Jaenisch, R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21931-21936.
[http://dx.doi.org/10.1073/pnas.1016071107] [PMID: 21106759]
[124]
Eberharter, A.; Becker, P.B. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep., 2002, 3(3), 224-229.
[http://dx.doi.org/10.1093/embo-reports/kvf053] [PMID: 11882541]
[125]
Wyss, D.F.; Wagner, G. The structural role of sugars in glycoproteins. Curr. Opin. Biotechnol., 1996, 7(4), 409-416.
[http://dx.doi.org/10.1016/S0958-1669(96)80116-9] [PMID: 8768899]
[126]
Freeze, H.H.; Schachter, H.; Kinoshita, T. Genetic disorders of glycosylation In: Essentials of Glycobiology:; Cold Spring Harbor, NY,, 2015; pp. 569-582.
[127]
Chen, M.M.; Bartlett, A.I.; Nerenberg, P.S.; Friel, C.T.; Hackenberger, C.P.; Stultz, C.M.; Radford, S.E.; Imperiali, B. Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proc. Natl. Acad. Sci. USA, 2010, 107(52), 22528-22533.
[http://dx.doi.org/10.1073/pnas.1015356107] [PMID: 21148421]
[128]
Price, J.L.; Shental-Bechor, D.; Dhar, A.; Turner, M.J.; Powers, E.T.; Gruebele, M.; Levy, Y.; Kelly, J.W. Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics. J. Am. Chem. Soc., 2010, 132(43), 15359-15367.
[http://dx.doi.org/10.1021/ja106896t] [PMID: 20936810]
[129]
Culyba, E.K.; Price, J.L.; Hanson, S.R.; Dhar, A.; Wong, C.H.; Gruebele, M.; Powers, E.T.; Kelly, J.W. Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science, 2011, 331(6017), 571-575.
[http://dx.doi.org/10.1126/science.1198461] [PMID: 21292975]
[130]
Shental-Bechor, D.; Levy, Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8256-8261.
[http://dx.doi.org/10.1073/pnas.0801340105] [PMID: 18550810]
[131]
Bosques, C.J.; Tschampel, S.M.; Woods, R.J.; Imperiali, B. Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J. Am. Chem. Soc., 2004, 126(27), 8421-8425.
[http://dx.doi.org/10.1021/ja0496266] [PMID: 15237998]
[132]
Petrescu, A.J.; Milac, A.L.; Petrescu, S.M.; Dwek, R.A.; Wormald, M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology, 2004, 14(2), 103-114.
[http://dx.doi.org/10.1093/glycob/cwh008] [PMID: 14514716]
[133]
Hanson, S.R.; Culyba, E.K.; Hsu, T.L.; Wong, C.H.; Kelly, J.W.; Powers, E.T. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3131-3136.
[http://dx.doi.org/10.1073/pnas.0810318105] [PMID: 19204290]
[134]
Jayaprakash, N.G.; Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J., 2017, 474(14), 2333-2347.
[http://dx.doi.org/10.1042/BCJ20170111] [PMID: 28673927]
[135]
Lu, D.; Yang, C.; Liu, Z. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation. J. Phys. Chem. B, 2012, 116(1), 390-400.
[http://dx.doi.org/10.1021/jp203926r] [PMID: 22118044]
[136]
Cheng, S.; Edwards, S.A.; Jiang, Y.; Gräter, F. Glycosylation enhances peptide hydrophobic collapse by impairing solvation. ChemPhysChem, 2010, 11(11), 2367-2374.
[http://dx.doi.org/10.1002/cphc.201000205] [PMID: 20583025]
[137]
Ellis, C.R.; Maiti, B.; Noid, W.G. Specific and nonspecific effects of glycosylation. J. Am. Chem. Soc., 2012, 134(19), 8184-8193.
[http://dx.doi.org/10.1021/ja301005f] [PMID: 22524526]
[138]
S.E.. Imperiali, B., Conformational switching by asparagine-linked glycosylation. J. Am. Chem. Soc., 1997, 119(9), 2295-2296.
[http://dx.doi.org/10.1021/ja963435o]
[139]
Wang, X.Y.; Ji, C.G.; Zhang, J.Z.H. Exploring the molecular mechanism of stabilization of the adhesion domains of human CD2 by N-glycosylation. J. Phys. Chem. B, 2012, 116(38), 11570-11577.
[http://dx.doi.org/10.1021/jp304116d] [PMID: 22946557]
[140]
Finkelstein, A.V.; Badretdin, A.J.; Galzitskaya, O.V.; Ivankov, D.N.; Bogatyreva, N.S.; Garbuzynskiy, S.O. There and back again: Two views on the protein folding puzzle. Phys. Life Rev., 2017, 21, 56-71.
[http://dx.doi.org/10.1016/j.plrev.2017.01.025] [PMID: 28190683]
[141]
Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci., 2003, 28(4), 210-214.
[http://dx.doi.org/10.1016/S0968-0004(03)00057-4] [PMID: 12713905]
[142]
Wedemeyer, W.J.; Welker, E.; Narayan, M.; Scheraga, H.A. Disulfide bonds and protein folding. Biochemistry, 2000, 39(15), 4207-4216.
[http://dx.doi.org/10.1021/bi992922o] [PMID: 10757967]
[143]
Hendrick, J.P.; Hartl, F.U. The role of molecular chaperones in protein folding. FASEB J., 1995, 9(15), 1559-1569.
[http://dx.doi.org/10.1096/fasebj.9.15.8529835] [PMID: 8529835]
[144]
Botelho, H.M.; Koch, M.; Fritz, G.; Gomes, C.M. Metal ions modulate the folding and stability of the tumor suppressor protein S100A2. FEBS J., 2009, 276(6), 1776-1786.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06912.x] [PMID: 19267779]
[145]
Bushmarina, N.A.; Blanchet, C.E.; Vernier, G.; Forge, V. Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci., 2006, 15(4), 659-671.
[http://dx.doi.org/10.1110/ps.051904206] [PMID: 16522796]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy