[1]
Dominy, J.E.; Simmons, C.R.; Hirschberger, L.L.; Hwang, J.; Coloso, R.M.; Stipanuk, M.H. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem., 2007, 282(35), 25189-25198.
[2]
Soohoo, N.; Schneider, J.A.; Kaplan, R.M. A cost-effectiveness analysis of the orphan drug cysteamine in the treatment of infantile cystinosis. Med. Decis. Making, 1997, 17(2), 193-198.
[3]
Thoene, J.G. Cystinosis. J. Inherit. Metab. Dis., 1995, 18(18), 380-386.
[4]
Kuśmierek, K.; Głowacki, R.; Bald, E. Determination of total cysteamine in human plasma in the form of its 2-S-quinolinium derivative by high performance liquid chromatography. Anal. Bioanal. Chem., 2005, 382(1), 231-233.
[5]
Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D.; Childs, B.; Kinzler, K.W.; Volgestein, B. The metabolic and molecular bases of inherited disease; 8th ed.; McGraw-Hill, New-York;. , 2001.
[7]
Hory, B.; Billerey, C.; Royer, J.; Saint, H.Y. Glomerular lesions in juvenile cystinosis: report of 2 cases. Clin. Nephrol., 1994, 42(5), 327-330.
[8]
Galh, W.A.; Thoene, J.G.; Schneider, J.A. Cystinosis. N. Engl. J. Med., 2002, 347(2), 111-121.
[9]
Besouw, M.; Levtchenko, E. mproving the prognosis of nephropathic cystinosis. Int. J. Nephrol. Renovasc. Dis., 2014, 7, 297-302.
[10]
European Medicines Agency (EMEA) (2007) Cystagon Product Information., EMEA, London
[11]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[12]
AlOthman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products: an analytical approach. Rev. Adv. Sci. Engg, 2013, 2(2), 155-166.
[13]
Rahman, N.; Azmi, S.N.H.; Wu, H-F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11, 69-74.
[14]
Stachowicz, M.; Lehmann, B.; Tibi, A.; Prognon, P.; Daurat, V.; Pradeau, D. Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 1998, 17, 767-773.
[15]
Hsiung, M.; Yeo, Y.Y.; Itiaba, K.; Crawhall, J.C. Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography. Biochem. Med., 1978, 19, 305-317.
[16]
Kataoka, H.; Tanaka, H.; Makita, M. Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection. J. Chromatogr. B., 1994, 657, 9-13.
[17]
Salmanpour, S.; Abbasghorbani, M.; Karimi, F.; Bavandpour, R.; Wen, Y. Electrocatalytic determination of cysteamine uses a nanostructure based electrochemical sensor in pharmaceutical samples. Curr. Anal. Chem., 2017, 13, 40-45.
[18]
Karimi-Maleh, H.; Salimi-Amiri, M.; Karimi, F. Khalilzadeh; M.A.; Baghayeri, M. A voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan. J. Chem., 2013, 2013, 1-7.
[19]
Arabali, V.; Karimi-Maleh, H. Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles. Anal. Methods, 2016, 8, 5604-5610.
[20]
Ensafi, A.A.; Karimi-Maleh, H. A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator. Electroanalysis, 2010, 22(21), 2558-2568.
[21]
Keyvanfard, M.; Ahmadi, M.; Karimi, F.; Alizad, K. Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Chin. Chem. Lett., 2014, 25, 1244-1246.
[22]
Taherkhani, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Hosseini, A.; Khalilzadeh, M.A.; Bagheri, H. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode. Chin. Chem. Lett., 2012, 23(2), 237-240.
[23]
Apyari, V.V.; Dmitrienko, S.G.; Arkhipova, V.V.; Atnagulov, A.G.; Zolotov, Y.A. Determination of cysteamine using label-free gold nanoparticles. Anal. Methods, 2012, 4, 3193-3199.
[24]
A. J. , Jonas; J.A., Schneider A simple, rapid assay for cysteamine and other thiols. Anal. Biochem., 1981, 114, 429-432.
[25]
Kubalczyk, P.; Bald, E. Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis, 2008, 29, 3636-3640.
[26]
Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55, 8638-8648.
[27]
Sanghavi, B.; Sitaula, J.S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal. Chem., 2013, 85, 8158-8165.
[28]
Atta, N.F.; El-Kady, M.F.; Galal, A. Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens. Actuators B., 2009, 141, 566-574.
[29]
Rahman, N.; Khan, S. Amitriptyline-molybdovanadate/-molybdotungstate based ion-selective membrane electrodes for determination of amitriptyline in pharmaceutical formulations and water samples. J. Electroanal. Chem. , 2016, 777, 92-100.
[30]
Abdel-Ghani, N.T.; Hussein, S.H. Determination of diphenylpyraline hydrochloride in pure solutions and pharmaceutical preparations using ion selective electrodes under batch and FIA conditions. Anal. Lett., 2010, 43(4), 582-602.
[31]
Mostafa, G.A. PVC matrix membrane sensor for potentiometric determination of metoclopramide hydrochloride in some pharmaceutical formulations. J. Pharm. Biomed. Anal., 2003, 31(3), 515-521.
[32]
Hassan, A.K.; Saad, B.; Ghani, S.A.; Adnan, R.; Rahim, A.A.; Ahmad, N.; Mokhtar, M.; Ameen, S.T.; Al-Araji, S.M. Ionophore-based potentiometric sensors for the flow-injection determination of promethazine hydrochloride in pharmaceutical formulations and human urine. Sensors , 2011, 11(1), 1028-1042.
[33]
Garcia, M.S.; Ortuno, J.A.; Albero, M.I.; Abuherba, M.S. Development of membrane selective electrode for determination of the antipsychotic sulpiride in pharmaceuticals and urine. Sensors , 2009, 9(6), 4309-4322.
[34]
Ensafi, A.A.; Allafchian, A.R. A new potentiometric sensor for the determination of desipramine based on N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate. IEEE Sens. J., 2011, 11(10), 2576-2582.
[35]
Erdem, A.; Ozsoz, M.; Kirilmaz, L.; Kilinc, E.; Dalbasti, T. Diphenhydramine‐selective plastic membrane sensor and its pharmaceutical applications. Electroanalysis, 1997, 9(12), 932-935.
[36]
Badawy, S.S.; Issa, Y.M.; Mutair, A.A. PVC membrane ion-selective electrodes for the determination of Hyoscyamine in pure solution and in pharmaceutical preparations under batch and flow modes. J. Pharm. Biomed. Anal., 2005, 39(1-2), 117-124.
[37]
Ensafi, A.A.; Allafchian, A.R. Novel and selective potentiometric membrane sensor for amiloride determination in pharmaceutical compounds and urine. J. Pharm. Biomed. Anal., 2008, 47, 802-806.
[38]
Liu, Z.H.; Wen, M.L.; Yao, Y.; Xiong, J. Plastic pethidine hydrochloride membrane sensor and its pharmaceutical applications. Sens. Actuators B., 2001, 72, 219-223.
[39]
Kanberoglu, G.S.; Coldur, F.; Topcu, C.; Cubuk, O. PVC-membrane potentiometric sensor for the determination of tamoxifen in pharmaceutical formulations. IEEE Sens. J., 2015, 15(11), 6199-6207.
[40]
Cosofret, V.V.; Thomas, J.D.R. Pharmaceutical Applications of Membrane Sensors, 1st ed; Pergamon Press: Newyork, 1982.
[41]
Cosofret, V.V. Membrane Electrodes in Drug-Substances Analysis; 1th ed.; Pergamon Press: Oxford, . , 1982.
[42]
Topcu, C.; Caglar, S.; Caglar, B.; Coldur, F.; Cubuk, O.; Sarp, G.; Gedik, K.; Cirak, B.B.; Tabak, A. Characterization of a hybridsmectite
nanomaterial formed by immobilizing of N-pyridin-2-
ylmethylsuccinamic acid onto (3- aminopropyl)triethoxysilane
modified smectite and its potentiometric sensor application. Adv.Nat. Sci.: Nanosci. Nanotechnol.,, 2016, 7 11 pp.
[43]
Shamsipur, M.; Kazemi, S.Y.; Niknam, K.; Sharghi, H. A new PVC-membrane electrode based on a thia-substituted macrocyclic diamide in selective potentiometric determination of silver ion. Bull. Korean Chem. Soc., 2002, 23, 53-58.
[44]
Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev., 1997, 97, 3083-3132.
[45]
Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem., 2008, 80(1), 85-104.
[46]
Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes Part I. Inogranic cations. Pure Appl. Chem., 2000, 72(10), 1851-2082.
[47]
Macca, C. Response time of ion-selective electrodes: Current usage versus IUPAC recommendations. Anal. Chim. Acta, 2004, 512(2), 183-190.
[48]
Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations1994). Pure Appl. Chem., 1994, 66(12), 2527-2536.