[1]
Kadan, S.; Rayan, M.; Rayan, A. Anticancer activity of anise (Pimpinella anisum L.) seed extract. Open Nutraceuticals J., 2013, 6, 1-5.
[2]
Zaid, H.; Raiyn, J.; Nasser, A.; Saad, B.; Rayan, A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceuticals J., 2010, 3, 194-202.
[3]
Dow, E.R.; Hughes, J.B.; Stephens, S.M.; Narayan, V.A.; Bishop, R.W. Integrating scientific data for drug discovery and development using the life sciences grid. Expert Opin. Drug Discov., 2009, 4(6), 687-699.
[4]
Kinch, M.S. 2015 in review: FDA approval of new drugs. Drug Discov. Today, 2016, 21(7), 1046-1050.
[5]
Amirkia, V.; Heinrich, M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Pharmacol., 2015, 6, 237.
[6]
Paoletta, S.; Steventon, G.B.; Wildeboer, D.; Ehrman, T.M.; Hylands, P.J.; Barlow, D.J. Screening of herbal constituents for aromatase inhibitory activity. Bioorg. Med. Chem., 2008, 16(18), 8466-8470.
[7]
Jiang, X.; Kumar, K.; Hu, X.; Wallqvist, A.; Reifman, J. DOVIS 2.0: An efficient and easy to use parallel virtual screening tool based on AutoDock 4.0. Chem. Cent. J., 2008, 2, 18.
[8]
Luksch, T.; Chan, N.S.; Brass, S.; Sotriffer, C.A.; Klebe, G.; Die-derich, W.E. Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors. ChemMedChem, 2008, 3(9), 1323-1336.
[9]
Kurczyk, A.; Warszycki, D.; Musiol, R.; Kafel, R.; Bojarski, A.J.; Polanski, J. Ligand-based virtual screening in a search for novel anti-HIV-1 chemotypes. J. Chem. Inf. Model., 2015, 55(10), 2168-2177.
[10]
Pappalardo, M.; Shachaf, N.; Basile, L.; Milardi, D.; Zeidan, M.; Raiyn, J.; Guccione, S.; Rayan, A. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. PLoS One, 2014, 9(10), e109340.
[11]
Zaid, H.; Raiyn, J.; Osman, M.; Falah, M.; Srouji, S.; Rayan, A. In silico modeling techniques for predicting the tertiary structure of human H4 receptor. Front. Biosci. (Landmark Ed), 2016, 21, 597-619.
[12]
Rayan, A. New tips for structure prediction by comparative modeling. Bioinformation, 2009, 3(6), 263-267.
[13]
Rayan, A.; Goldblum, A. A stochastic method to determine, in
silico, the drug like character of molecules. WIPO Patent No.
2005022111 2005.
[14]
Glick, M.; Goldblum, A. A novel energy-based stochastic method for positioning polar protons in protein structures from X-rays. Proteins, 2000, 38(3), 273-287.
[15]
Glick, M.; Rayan, A.; Goldblum, A. A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 703-708.
[16]
Michaeli, A.; Rayan, A. Modeling ensembles of loop conformations by iterative stochastic elimination. Lett. Drug Des. Discov., 2016, 13(3), 1-6.
[17]
Rayan, A.; Senderowitz, H.; Goldblum, A. Exploring the conformational space of cyclic peptides by a stochastic search method. J. Mol. Graph. Model., 2004, 22(5), 319-333.
[18]
Rayan, A.; Noy, E.; Chema, D.; Levitzki, A.; Goldblum, A. Stochastic algorithm for kinase homology model construction. Curr. Med. Chem., 2004, 11(6), 675-692.
[19]
Rayan, A.; Falah, M.; Raiyn, J.; Da’adoosh, B.; Kadan, S.; Zaid, H.; Goldblum, A. Indexing molecules for their hERG liability. Eur. J. Med. Chem., 2013, 65C, 304-314.
[20]
Rayan, A. The utility of intelligent learning engine in drug discovery informatics. Br. J. Pharmacol., 2010, 7(4), 26.
[21]
Zeidan, M.; Rayan, M.; Zeidan, N.; Falah, M.; Rayan, A. Indexing natural products for their potential anti-diabetic activity: Filtering and mapping discriminative physicochemical properties. Molecules, 2017, 22(9), E1563.
[22]
Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res., 2018, 67(1), 67-75.
[23]
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12(11), e0187925.
[24]
Rayan, A.; Marcus, D.; Goldblum, A. Predicting oral druglikeness by iterative stochastic elimination. J. Chem. Inf. Model., 2010, 50(3), 437-445.
[25]
Zatsepin, M.; Mattes, A.; Rupp, S.; Finkelmeier, D.; Basu, A.; Burger-Kentischer, A.; Goldblum, A. Computational discovery and experimental confirmation of TLR9 receptor antagonist leads. J. Chem. Inf. Model., 2016, 56(9), 1835-1846.
[26]
Rayan, A. New vistas in GPCR 3D structure prediction. J. Mol. Model., 2010, 16(2), 183-191.
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[28]
Hann, M.M.; Oprea, T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol., 2004, 8(3), 255-263.
[29]
Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J. Ethnopharmacol., 2009, 123(3), 494-498.
[30]
Moon, L.; Ha, Y.M.; Jang, H.J.; Kim, H.S.; Jun, M.S.; Kim, Y.M.; Lee, Y.S.; Lee, D.H.; Son, K.H.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kim, Y.S.; Chang, K.C. Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae rhizome inhibit TNF-alpha-induced VCAM-1 expression in human endothelial cells: Involvement of PPAR-gamma upregulation and PI3K, ERK1/2, and PKC signal pathways. J. Ethnopharmacol., 2011, 133(2), 336-344.
[31]
Guo, N.; Wu, J.; Fan, J.; Yuan, P.; Shi, Q.; Jin, K.; Cheng, W.; Zhao, X.; Zhang, Y.; Li, W.; Tang, X.; Yu, L. In vitro activity of isoimperatorin, alone and in combination, against Mycobacterium tuberculosis. Lett. Appl. Microbiol., 2014, 58(4), 344-349.
[32]
Tong, K.; Xin, C.; Chen, W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol. Lett., 2017, 13(1), 518-524.
[33]
Lee, W.; Kim, K.Y.; Yu, S.N.; Kim, S.H.; Chun, S.S.; Ji, J.H.; Yu, H.S.; Ahn, S.C. Pipernonaline from piper longum linn. induces ros-mediated apoptosis in human prostate cancer PC-3 cells. Biochem. Biophys. Res. Commun., 2013, 430(1), 406-412.
[34]
Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 411(1), 219-225.
[35]
Park, B.S.; Son, D.J.; Park, Y.H.; Kim, T.W.; Lee, S.E. Antiplatelet effects of acidamides isolated from the fruits of Piper longum L. Phytomedicine, 2007, 14(12), 853-855.
[36]
Park, I.K. Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti. Nat. Prod. Res., 2012, 26(22), 2129-2131.
[37]
Lee, S.A.; Hwang, J.S.; Han, X.H.; Lee, C.; Lee, M.H.; Choe, S.G.; Hong, S.S.; Lee, D.; Lee, M.K.; Hwang, B.Y. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch. Pharm. Res., 2008, 31(6), 679-683.
[38]
Lee, S.W.; Rho, M.C.; Nam, J.Y.; Lim, E.H.; Kwon, O.E.; Kim, Y.H.; Lee, H.S.; Kim, Y.K. Guineensine, an Acyl-CoA: Cholesterol acyltransferase inhibitor, from the fruits of Piper longum. Planta Med., 2004, 70(7), 678-679.
[39]
Nicolussi, S.; Viveros-Paredes, J.M.; Gachet, M.S.; Rau, M.; Flores-Soto, M.E.; Blunder, M.; Gertsch, J. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacol. Res., 2014, 80, 52-65.
[40]
Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenphol, K.; Wongvein, C.; Ruttanaweang, P.; Wongwattanavuch, P.; Suksamrarn, A. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol., 2004, 93(2-3), 173-176.
[41]
Singh, B.; Sharma, R.A. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees. Phytomedicine, 2013, 20(5), 441-445.
[42]
Sarkar, C.; Bose, S.; Banerjee, S. Evaluation of hepatoprotective activity of vasicinone in mice. Indian J. Exp. Biol., 2014, 52(7), 705-711.
[43]
Liu, W.; Wang, Y.; He, D.D.; Li, S.P.; Zhu, Y.D.; Jiang, B.; Cheng, X.M.; Wang, Z.; Wang, C.H. Antitussive, expectorant, and bronchodilating effects of quinazoline alkaloids (+/-)-vasicine, deoxyvasicine, and (+/-)-vasicinone from aerial parts of Peganum harmala L. Phytomedicine, 2015, 22(12), 1088-1095.
[44]
Usia, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Constituents of Chinese propolis and their antiproliferative activities. J. Nat. Prod., 2002, 65(5), 673-676.
[45]
Sun, L.; Wang, K.; Xu, X.; Ge, M.; Chen, Y.; Hu, F. Potential protective effects of bioactive constituents from chinese propolis against acute oxidative stress induced by hydrogen peroxide in cardiac H9c2 cells. Evid. Based Complement. Alternat. Med., 2017, 2017, 7074147.
[46]
Jaikang, C.; Chaiyasut, C.; Narongchai, P.; Niwatananun, K.; Narongchai, S.; Kusirisin, W. Inhibitory effects of caffeic acid ester analogues on free radicals and human liver microsome CYP1A2 activities. Med. Chem., 2011, 7(2), 99-105.
[47]
Kim, K.S.; Cui, X.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-small ka, CyrillicB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules, 2013, 18(11), 13245-13259.
[48]
Sasaki-Hamada, S.; Hoshi, M.; Niwa, Y.; Ueda, Y.; Kokaji, A.; Kamisuki, S.; Kuramochi, K.; Sugawara, F.; Oka, J. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 155-161.
[49]
Banbury, L.K.; Shou, Q.; Renshaw, D.E.; Lambley, E.H.; Griesser, H.J.; Mon, H.; Wohlmuth, H. Compounds from Geijera parviflora with prostaglandin E2 inhibitory activity may explain its traditional use for pain relief. J. Ethnopharmacol., 2015, 163, 251-255.