Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel Guanosine Derivatives as Anti-HCV NS5b Polymerase: A QSAR and Molecular Docking Study

Author(s): Abdo A. Elfiky*

Volume 15, Issue 2, 2019

Page: [130 - 137] Pages: 8

DOI: 10.2174/1573406414666181015152511

Price: $65

Abstract

Background: IDX-184 is a guanosine derivative having a potent inhibitory performance against HCV NS5b polymerase.

Objective: To test three different groups of 2'C - modified analogues of guanosine nucleotide against HCV polymerase.

Method: Using combined Quantitative Structure-Activity Relationships (QSAR) and molecular docking, the suggested compounds are studied.

Results: Examining the docked structures of the compounds with experimentally solved NS5b structure (PDB ID: 2XI3) revealed that most of the compounds have the same mode of interaction as that of guanosine nucleotide and hence, NS5b inhibition is possible.

Conclusion: It is revealed that sixteen modifications have a better binding affinity to NS5b compared to guanosine. In addition, seven more compounds are better in NS5b binding compared to the approved drug, sofosbuvir, and the compound under clinical trials, IDX-184. Hence, these compounds could be potent HCV NS5b inhibitors.

Summary Points: Novel guanosine modifications were introduced in silico and optimized using QM. QSAR and docking calculations are performed to test the binding affinity of the compounds to HCV NS5b active site. Comparison between the binding affinities and the mode of interactions of the compounds and both GTP and IDX-184 is performed. Structural mining to quantify the mode of binding of the compounds to NS5b active site pocket.

Keywords: NS5b polymerase, hepatitis C Virus (HCV), sofosbuvir, guanosine inhibitors, QSAR, protein-ligand docking.

Graphical Abstract

[1]
Halfon, P.; Locarnini, S. Hepatitis C virus resistance to protease inhibitors. J. Hepatol., 2011, 55(1), 192-206.
[2]
Genovese, D.; Dettori, S.; Argentini, C.; Villano, U.; Chionne, P.; Angelico, M.; Rapicetta, M. Molecular epidemiology of hepatitis C virus genotype 4 isolates in Egypt and analysis of the variability of envelope proteins E1 and E2 in patients with chronic hepatitis. J. Clin. Microbiol., 2005, 43(4), 1902-1909.
[3]
Bahgat, M.M.; Ibrahim, A.A.; Abd-Elshafy, D.N.; Mesalam, A.A.; Gewaid, H.E.; Ismaeil, A.A.; El-Waseef, A.M.; Maghraby, A.S.; Barakat, A.B.; El-Far, M.A.; Ghanem Hel, D.; Mohamed, A.M.; Ali, M.A. Characterization of NS3 protease from an Egyptian HCV genotype 4a isolate. Arch. Virol., 2009, 154(10), 1649-1657.
[4]
Yang, P.L.; Gao, M.; Lin, K.; Liu, Q.; Villareal, V.A. Anti-HCV drugs in the pipeline. Curr. Opin. Virol., 2011, 1(6), 607-616.
[5]
Das, D.; Hong, J.; Chen, S.H.; Wang, G.; Beigelman, L.; Seiwert, S.D.; Buckman, B.O. Recent advances in drug discovery of benzothiadiazine and related analogs as HCV NS5B polymerase inhibitors. Bioorg. Med. Chem., 2011, 19(16), 4690-4703.
[6]
De Francesco, R.; Carfí, A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv. Drug Deliv. Rev., 2007, 59(12), 1242-1262.
[7]
De Francesco, R.; Tomei, L.; Altamura, S.; Summa, V.; Migliaccio, G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res., 2003, 58(1), 1-16.
[8]
Gonzalez-Grande, R.; Jimenez-Perez, M.; Gonzalez Arjona, C.; Mostazo Torres, J. New approaches in the treatment of hepatitis C. World J. Gastroenterol., 2016, 22(4), 1421-1432.
[9]
Asselah, T. Daclatasvir plus sofosbuvir for HCV infection: an oral combination therapy with high antiviral efficacy. J. Hepatol., 2014, 61(2), 435-438.
[10]
Lemon, S.M.; McKeating, J.A.; Pietschmann, T.; Frick, D.N.; Glenn, J.S.; Tellinghuisen, T.L.; Symons, J.; Furman, P.A. Development of novel therapies for hepatitis C. Antiviral Res., 2010, 86(1), 79-92.
[11]
Sarrazin, C.; Hézode, C.; Zeuzem, S.; Pawlotsky, J-M. Antiviral strategies in hepatitis C virus infection. J. Hepatol., 2012, 56, S88-S100.
[12]
Yan, S.; Appleby, T.; Larson, G.; Wu, J.Z.; Hamatake, R.; Hong, Z.; Yao, N. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(22), 5888-5891.
[13]
Yan, S.; Larson, G.; Wu, J.Z.; Appleby, T.; Ding, Y.; Hamatake, R.; Hong, Z.; Yao, N. Novel thiazolones as HCV NS5B polymerase allosteric inhibitors: Further designs, SAR, and X-ray complex structure. Bioorg. Med. Chem. Lett., 2007, 17(1), 63-67.
[14]
Graham, D.J.; Stahlhut, M.; Flores, O.; Olsen, D.B.; Hazuda, D.J.; LaFemina, R.L.; Ludmerer, S.W. A genotype 2b NS5B polymerase with novel substitutions supports replication of a chimeric HCV 1b:2b replicon containing a genotype 1b NS3-5A background. Antiviral Res., 2006, 69(1), 24-30.
[15]
Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: a QSAR study. Med. Chem. Res., 2016, 25, 1005-1008.
[16]
Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A. 2′-Methylguanosine Prodrug (IDX-184), Phosphoramidate Prodrug (Sofosbuvir), Diisobutyryl Prodrug (R7128) Are Better Than Their Parent Nucleotides and Ribavirin in Hepatitis C Virus Inhibition: A Molecular Modeling Study. J. Comput. Theor. Nanosci., 2015, 12(3), 376-386.
[17]
Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88, 2044-2051.
[18]
Saleh, N.A.; Elfiky, A.A.; Ezat, A.A.; Elshemey, W.M.; Ibrahim, M. The Electronic and quantitative structure activity relationship properties of modified telaprevir compounds as hcv ns3 protease inhibitors. J. Comput. Theor. Nanosci., 2014, 11(2), 544-548.
[19]
Saleh, N.A.; Ezat, A.A.; Elfiky, A.A.; Elshemey, W.M.; Ibrahim, M. Theoretical study on modified boceprevir compounds as ns3 protease inhibitors. J. Comput. Theor. Nanosci., 2015, 12(3), 371-375.
[20]
Raj, V.S.; Osterhaus, A.D.; Fouchier, R.A.; Haagmans, B.L. MERS: Emergence of a novel human coronavirus. Curr. Opin. Virol., 2014, 5, 58-62.
[21]
Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A.; Desoky, O.S. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J., 2013, 32(1), 75-80.
[22]
Schmitz, C.; Bonvin, A.M. Protein-protein HADDocking using exclusively pseudocontact shifts. J. Biomol. NMR, 2011, 50(3), 263-266.
[23]
Zhou, X.J.; Pietropaolo, K.; Chen, J.; Khan, S.; Sullivan-Bolyai, J.; Mayers, D. Safety and pharmacokinetics of IDX184, a liver-targeted nucleotide polymerase inhibitor of hepatitis C virus, in healthy subjects. Antimicrob. Agents Chemother., 2011, 55(1), 76-81.
[24]
Licia Tomei, S.A. Giacomo Paonessa, Raffaele De Francesco and Giovanni Migliaccio, HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antivir. Chem. Chemother., 2005, 16, 225-245.
[25]
Saleh, N.A. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 136PC, 1523-1529.
[26]
Elfiky, A.A.; Gawad, W.A.; Elshemey, W.M. Hepatitis C Viral Polymerase Inhibition using Directly Acting Antivirals, A Computational Approach. In Software and Techniques for Bio-Molecular Modeling, A, M., Ed. Austin publishing group: USA, In press.
[27]
Summers, K.L.; Mahrok, A.K.; Dryden, M.D.; Stillman, M.J. Structural properties of metal-free apometallothioneins. Biochem. Biophys. Res. Commun., 2012, 425(2), 485-492.
[28]
O’Farrell, D.; Trowbridge, R.; Rowlands, D.; Jäger, J. Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): Structural evidence for nucleotide import and de-novo initiation. J. Mol. Biol., 2003, 326(4), 1025-1035.
[29]
Harrus, D.; Ahmed-El-Sayed, N.; Simister, P.C.; Miller, S.; Triconnet, M.; Hagedorn, C.H.; Mahias, K.; Rey, F.A.; Astier-Gin, T.; Bressanelli, S. Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J. Biol. Chem., 2010, 285(43), 32906-32918.
[30]
Cretton-Scott, E.; Perigaud, C.; Peyrottes, S.; Licklider, L.; Camire, M.; Larsson, M.; La Colla, M.; Hildebrand, E.; Lallos, L.; Bilello, J. 588 in vitro antiviral activity and pharmacology of IDX184, a novel and potent inhibitor of HCV replication. J. Hepatol., 2008, 48, S220.
[31]
Stedman, C. Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: a review of its clinical potential. Therap. Adv. Gastroenterol., 2014, 7(3), 131-140.
[32]
Naka, K.; Ikeda, M.; Abe, K-i.; Dansako, H.; Kato, N. Mizoribine inhibits hepatitis C virus RNA. Biophys. Res. Commun., 2005, 330(3), 871-879.
[33]
Harrus, D.; Ahmed-El-Sayed, N.; Simister, P.C.; Miller, S.; Triconnet, M.; Hagedorn, C.H.; Mahias, K.; Rey, F.A.; Astier-Gin, T.; Bressanelli, S. Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J. Biol. Chem., 2010, 285(43), 32906-32918.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy