[1]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[2]
Woolley, D.W.; Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl. Acad. Sci. USA, 1954, 40(4), 228-231.
[3]
Launay, J.M.; Schneider, B.; Loric, S.; Da Prada, M.; Kellermann, O. Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J., 2006, 20(11), 1843-1854.
[4]
Moltzen, E.K.; Bang-Andersen, B. Serotonin reuptake inhibitors: The corner stone in treatment of depression for half a century - a medicinal chemistry survey. Curr. Top. Med. Chem., 2006, 6(17), 1801-1823.
[5]
McGoey, L. Profitable failure: Antidepressant drugs and the triumph of flawed experiments. Hist. Human Sci., 2010, 23(1), 58-78.
[7]
Stahl, S.M.; Lee-Zimmerman, C.; Cartwright, S.; Morrissette, D.A. Serotonergic drugs for depression and beyond. Curr. Drug Targets, 2013, 14(5), 578-585.
[8]
Blier, P.; Bergeron, R.; de Montigny, C. Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacology, 1997, 16(5), 333-338.
[9]
Blier, P.; Ward, N.M. Is there a role for 5-HT1A agonists in the treatment of depression? Biol. Psychiatry, 2003, 53(3), 193-203.
[10]
Morales, M.; Battenberg, E.; de Lecea, L.; Bloom, F.E. The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res., 1996, 731(1-2), 199-202.
[11]
Yan, Z. Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex: Molecular mechanisms and functional implications. Mol. Neurobiol., 2002, 26(2-3), 203-216.
[12]
Adell, A. Lu-AA21004, a multimodal serotonergic agent, for the potential treatment of depression and anxiety. IDrugs, 2010, 13(12), 900-910.
[13]
Connolly, K.R.; Thase, M.E. Vortioxetine: A new treatment for major depressive disorder. Expert Opin. Pharmacother., 2016, 17(3), 412-431.
[14]
Tritschler, L.; Felice, D.; Colle, R.; Guilloux, J.P.; Corruble, E.; Gardier, A.M.; David, D.J. Vortioxetine for the treatment of major depressive disorder. Expert Rev. Clin. Pharmacol., 2014, 49(12), 781-790.
[15]
McIntyre, R.S.; Harrison, J.; Loft, H.; Jacobson, W.; Olsen, C.K. The effects of vortioxetine on cognitive function in patients with major depressive disorder: A meta-analysis of three randomized controlled trials. Int. J. Neuropsychopharmacol., 2016, 19(10), 1-9.
[16]
Bang-Andersen, B.; Ruhland, T.; Jørgensen, M.; Smith, G.; Frederiksen, K.; Jensen, K.G.; Zhong, H.; Nielsen, S.M.; Hogg, S.; Mørk, A.; Stensbøl, T.B. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): A novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem., 2011, 54(9), 3206-3221.
[17]
Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res., 1969, 2(8), 232-239.
[18]
Dong, J.; Cao, D.S.; Miao, H.Y.; Liu, S.; Deng, B.C.; Yun, Y.H.; Wang, N.N.; Lu, A.P.; Zeng, W.B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform., 2015, 7, 60.
[19]
Tibshirani, R. Regression shrinkage and regression via LASSO. J.R. Statist. Soc., (B). 1996, 58(5), 267-288.
[20]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR Models. J. Comput. Chem. Soft. News and Updates, 2013, 34, 2121-2132.
[21]
Bro, R.; Kjeldahl, K.; Smilde, A.K.; Kiers, H.A. Cross-validation of component models: A critical look at current methods. Anal. Bioanal. Chem., 2008, 390(5), 1241-1251.
[22]
Filzmoser, P.; Liebmann, B.; Varmuza, K. Repeated double cross validation. J. Chem., 2009, 23(4), 160-171.
[23]
Shi, L.M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R.M.; Branham, W.S.; Dial, S.L.; Moland, C.L.; Sheehan, S.M. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Comput. Sci., 2001, 41(1), 186-195.
[24]
Schüürmann, G.; Ebert, R.; Chen, J.; Wang, B.; Kühne, R. External validation and prediction employing the predictive squared correlation coefficients test set activity mean vs training set activity mean. J. Chem. Inf. Model., 2008, 48(11), 2140-2145.
[25]
Consonni, V.; Ballabio, D.; Todeschini, R. Comments on definition of Q2 parameter for QSAR validation. J. Chem. Inf. Model., 2009, 49(7), 1669-1678.
[26]
Consonni, V.; Ballabio, D.; Todeschini, R. Evaluation of model predictive ability by external validation techniques. J. Chemometr., 2010, 24, 194-201.
[27]
Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45(1), 255-268.
[28]
Lin, L.I. Assay validation using the concordance correlation coefficient. Biometrics, 1992, 48(2), 599-604.
[30]
Rácz, A.; Bajusz, D.; Héberger, K. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. SAR QSAR Environ. Res., 2015, 26(7-9), 683-700.
[31]
Erzincan, P.; Saçan, M.T.; Yüce-Dursun, B.; Danış, Ö.; Demir, S.; Erdem, S.S.; Ogan, A. QSAR models for antioxidant activity of new coumarin derivatives. SAR QSAR Environ. Res., 2015, 26(7-9), 721-737.
[32]
Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR & Comb. Sci., 2007, 26(5), 694-701.
[33]
Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR modeling is not “push a button and find a correlation”: A case study of toxicity of (Benzo-)triazoles of Algae. Mol. Inform., 2012, 31(11-12), 817-835.
[34]
To’th, G.; Bodai, Z.; He’berger, K. Estimation of influential points in any data set from coefficient of determination and its leave-one-out cross-validated counterpart. J. Comput. Aided Mol. Des., 2013, 27, 837-844.