[1]
Zou, Q.; Li, X.; Jiang, Y.; Zhao, Y.; Wang, G. BinMemPredict: A Web server and software for predicting membrane protein types. Curr. Proteomics, 2013, 10(1), 2-9.
[2]
Liu, H.; Zeng, F.; Zhang, M.; Huang, F.; Wang, J.; Guo, J.; Liu, C.; Wang, H. Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J. Control. Release, 2016, 226, 124-137.
[3]
Milletti, F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today, 2012, 17(15), 850-860.
[4]
Green, M.; Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6), 1179-1188.
[5]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[6]
McKeown, A.N.; Naro, J.L.; Huskins, L.J.; Almeida, P.F. A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes. Biochemistry, 2011, 50(5), 654-662.
[7]
Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci., 2017, 38(4), 406-424.
[8]
Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res., 2016, 44(D1), D1098-D1103.
[9]
Hällbrink, M.; Kilk, K.; Elmquist, A.; Lundberg, P.; Lindgren, M.; Jiang, Y.; Pooga, M.; Soomets, U.; Langel, Ü. Prediction of cell-penetrating peptides. Int. J. Pept. Res. Ther., 2005, 11(4), 249-259.
[10]
Gautam, A.; Chaudhary, K.; Kumar, R.; Sharma, A.; Kapoor, P.; Tyagi, A. Open Source Drug Discovery Consortium. Raghava, G.P. In silico approaches for designing highly effective cell penetrating peptides. J. Transl. Med., 2013, 11, 74.
[11]
Diener, C.; Garza Ramos Martínez, G.; Moreno Blas, D.; Castillo González, D.A.; Corzo, G.; Castro-Obregon, S.; Del Rio, G. Effective design of multifunctional peptides by combining compatible functions. PLOS Comput. Biol., 2016, 12(4), e1004786.
[12]
Hansen, M.; Kilk, K.; Langel, U. Predicting cell-penetrating peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 572-579.
[13]
Sanders, W.S.; Johnston, C.I.; Bridges, S.M.; Burgess, S.C.; Willeford, K.O. Prediction of cell penetrating peptides by support vector machines. PLOS Comput. Biol., 2011, 7(7), e1002101.
[14]
Holton, T.A.; Pollastri, G.; Shields, D.C.; Mooney, C. CPPpred: Prediction of cell penetrating peptides. Bioinformatics, 2013, 29(23), 3094-3096.
[15]
Chen, L.; Chu, C.; Huang, T.; Kong, X.; Cai, Y.D. Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models. Amino Acids, 2015, 47(7), 1485-1493.
[16]
Tang, H.; Su, Z.D.; Wei, H.H.; Chen, W.; Lin, H. Prediction of cell-penetrating peptides with feature selection techniques. Biochem. Biophys. Res. Commun., 2016, 477(1), 150-154.
[17]
Wei, L.; Xing, P.; Su, R.; Shi, G.; Ma, Z.S.; Zou, Q. CPPred-RF: A sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J. Proteome Res., 2017, 16(5), 2044-2053.
[18]
Dobchev, D.A.; Mager, I.; Tulp, I.; Karelson, G.; Tamm, T.; Tamm, K.; Janes, J.; Langel, U.; Karelson, M. Prediction of cell-penetrating peptides using artificial neural networks. Curr. Comput. Aided Drug Des., 2010, 6(2), 79-89.
[19]
Provost, F. In: Machine learning from imbalanced data sets 101, Proceedings of the AAAI’2000 workshop on imbalanced data sets,
Austin, Texas, July 31. 2000.
[20]
Cheng, J.H.; Yang, H.; Liu, M.L.; Su, W.; Feng, P.M.; Ding, H.; Chen, W.; Lin, H. Prediction of bacteriophage proteins located in the host cell using hybrid features. Chemometr. Intell. Lab., 2018, 180, 64-69.
[21]
Tang, H.; Zhao, Y.W.; Zou, P.; Zhang, C.M.; Chen, R.; Huang, P.; Lin, H. HBPred: A tool to identify growth hormone-binding proteins. Int. J. Biol. Sci., 2018, 14(8), 957-964.
[22]
Liu, B.R.; Huang, Y-W.; Aronstam, R.S.; Lee, H-J. Identification of a short cell-penetrating peptide from bovine lactoferricin for intracellular delivery of DNA in human A549 cells. PLoS One, 2016, 11(3), e0150439.
[23]
Wei, L.; Tang, J.; Zou, Q. SkipCPP-Pred: An improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics, 2017, 18(7), 742.
[24]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[25]
Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682.
[26]
Cao, R.; Cheng, J. Protein single-model quality assessment by feature-based probability density functions. Sci. Rep., 2016, 6, 23990.
[27]
Cao, R.; Cheng, J. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks. Methods, 2016, 93, 84-91.
[28]
Tang, H.; Cao, R.; Wang, W.; Liu, T.; Wang, L.; He, C. A two-step discriminated method to identify thermophilic proteins. Int. J. Biomath., 2017, 4, 123-130.
[29]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[30]
Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354.
[31]
Zou, Q.; Wan, S.; Ju, Y.; Tang, J.; Zeng, X. Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst. Biol., 2016, 10(4), 114.
[32]
Chen, X.X.; Tang, H.; Li, W.C.; Wu, H.; Chen, W.; Ding, H.; Lin, H. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 1654623.
[33]
Zhao, Y.W.; Su, Z.D.; Yang, W.; Lin, H.; Chen, W.; Tang, H. IonchanPred 2.0: A tool to predict ion channels and their types. Int. J. Mol. Sci., 2017, 18(9), pii E1838.
[34]
Lai, H.Y.; Chen, X.X.; Chen, W.; Tang, H.; Lin, H. Sequence-based predictive modeling to identify cancerlectins. Oncotarget, 2017, 8(17), 28169-28175.
[35]
Yang, H.; Tang, H.; Chen, X.X.; Zhang, C.J.; Zhu, P.P.; Ding, H.; Chen, W.; Lin, H. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 5413903.
[36]
Tang, H.; Zou, P.; Zhang, C.; Chen, R.; Chen, W.; Lin, H. Identification of apolipoprotein using feature selection technique. Sci. Rep., 2016, 6, 30441.
[37]
Tang, H.; Chen, W.; Lin, H. Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol. Biosyst., 2016, 12(4), 1269-1275.
[38]
Cao, R.; Adhikari, B.; Bhattacharya, D.; Sun, M.; Hou, J.; Cheng, J. QAcon: Single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics, 2017, 33(4), 586-588.
[39]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: Predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[40]
Chen, W.; Yang, H.; Feng, P.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[41]
Zhao, Y.W.; Lai, H.Y.; Tang, H.; Chen, W.; Lin, H. Prediction of phosphothreonine sites in human proteins by fusing different features. Sci. Rep., 2016, 6, 34817.
[42]
Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H. Identifying phage virion proteins by using two-step feature selection methods. Molecules, 2018, 23(8), 2000.
[43]
Li, W.C.; Deng, E.Z.; Ding, H.; Chen, W.; Lin, H. iORI-PseKNC: A predictor for identifying origin of replication with pseudo k-tuple nucleotide composition. Chemometr. Intell. Lab., 2015, 141, 100-106.
[44]
Yang, H.; Lv, H.; Ding, H.; Chen, W.; Lin, H. iRNA-2OM: A sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens. J. Comput. Biol., 2018, 25(11), 1266-1277.
[45]
Li, D.; Ju, Y.; Zou, Q. Protein folds prediction with hierarchical structured SVM. Curr. Proteomics, 2016, 13(2), 79-85.
[46]
Chen, W.; Feng, P.; Ding, H.; Lin, H. Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcriptome. Mol. Genet. Genomics, 2016, 291(6), 2225-2229.
[47]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-methyl: Identifying N 6-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[48]
Chen, W.; Feng, P.; Tang, H.; Ding, H.; Lin, H. Identifying 2′-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions. Genomics, 2016, 107(6), 255-258.
[49]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K-C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[50]
Cao, R.; Wang, Z.; Wang, Y.; Cheng, J. SMOQ: A tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. BMC Bioinformatics, 2014, 15, 120.
[51]
Cao, R.; Wang, Z.; Cheng, J. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment. BMC Struct. Biol., 2014, 14, 13.
[53]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[54]
Liao, Z.; Ju, Y.; Zou, Q. Prediction of G-protein-coupled receptors with SVM-prot features and random forest. Scientifica., 2016, 2016, 8309253.
[55]
Zhao, X.; Zou, Q.; Liu, B.; Liu, X. Exploratory predicting protein folding model with random forest and hybrid features. Curr. Proteomics, 2014, 11(4), 289-299.
[56]
Chen, W.; Lin, H.; Feng, P.; Wang, J. Exon skipping event prediction based on histone modifications. Interdiscip. Sci., 2014, 6(3), 241-249.
[57]
Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G. CPPsite: A curated database of cell penetrating peptides. Database., 2012, 2012, bas015.
[58]
Zhang, T.; Tan, P.; Wang, L.; Jin, N.; Li, Y.; Zhang, L.; Yang, H.; Hu, Z.; Zhang, L.; Hu, C.; Li, C.; Qian, K.; Zhang, C.; Huang, Y.; Li, K.; Lin, H.; Wang, D. RNALocate: A resource for RNA subcellular localizations. Nucleic Acids Res., 2017, 45(D1), D135-D138.
[59]
Liang, Z.Y.; Lai, H.Y.; Yang, H.; Zhang, C.J.; Yang, H.; Wei, H.H.; Chen, X.X.; Zhao, Y.W.; Su, Z.D.; Li, W.C.; Deng, E.Z.; Tang, H.; Chen, W.; Lin, H. Pro54DB: A database for experimentally verified sigma-54 promoters. Bioinformatics, 2017, 33(3), 467-469.
[60]
Ding, H.; Yang, W.; Tang, H.; Feng, P.M.; Huang, J.; Chen, W.; Lin, H. PHYPred: A tool for identifying bacteriophage enzymes and hydrolases. Virol. Sin., 2016, 31(4), 350-352.
[61]
Guo, S.H.; Deng, E.Z.; Xu, L.Q.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iNuc-PseKNC: A sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 2014, 30(11), 1522-1529.
[62]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883-891.
[63]
Cao, R.; Bhattacharya, D.; Adhikari, B.; Li, J.; Cheng, J. Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics, 2015, 31(12), i116-i123.
[64]
Adhikari, B.; Bhattacharya, D.; Cao, R.; Cheng, J. CONFOLD: Residue-residue contact-guided ab initio protein folding. Proteins, 2015, 83(8), 1436-1449.
[65]
Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409.
[66]
Li, J.; Cao, R.; Cheng, J. A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11. BMC Bioinformatics, 2015, 16, 337.
[67]
Higa, M.; Katagiri, C.; Shimizu-Okabe, C.; Tsumuraya, T.; Sunagawa, M.; Nakamura, M.; Ishiuchi, S.; Takayama, C.; Kondo, E.; Matsushita, M. Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter. Biochem. Biophys. Res. Commun., 2015, 457(2), 206-212.
[68]
Holm, T.; Netzereab, S.; Hansen, M.; Langel, Ü.; Hällbrink, M. Uptake of cell-penetrating peptides in yeasts. FEBS Lett., 2005, 579(23), 5217-5222.
[69]
Good, L.; Awasthi, S.K.; Dryselius, R.; Larsson, O.; Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol., 2001, 19(4), 360-364.
[70]
Mäe, M.; Myrberg, H.; Jiang, Y.; Paves, H.; Valkna, A.; Langel, Ü. Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim. Biophys. Acta, 2005, 1669(2), 101-107.
[71]
Duchardt, F.; Ruttekolk, I.R.; Verdurmen, W.P.; Lortat-Jacob, H.; Bürck, J.; Hufnagel, H.; Fischer, R.; Van den Heuvel, M.; Löwik, D.W.; Vuister, G.W. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J. Biol. Chem., 2009, 284(52), 36099-36108.
[72]
Duchardt, F.; Fotin‐Mleczek, M.; Schwarz, H.; Fischer, R.; Brock, R. A comprehensive model for the cellular uptake of cationic cell‐penetrating peptides. Traffic, 2007, 8(7), 848-866.
[73]
Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem., 1998, 41(14), 2481-2491.
[74]
Karelson, M. Molecular descriptors in QSAR/QSPR; Wiley-Interscience: New York, 2000.
[75]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[76]
Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res., 2008, 36(Suppl. 1), D202-D205.
[77]
Chen, W.; Feng, P-M.; Deng, E.Z.; Lin, H.; Chou, K.C. iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem., 2014, 462, 76-83.
[78]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014, 623149.
[79]
Chen, W.; Lei, T-Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[80]
Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res., 2009, 37, W202-W208.
[81]
Cao, R.; Freitas, C.; Chan, L.; Sun, M.; Jiang, H.; Chen, Z. ProLanGO: Protein function prediction using neural machine translation based on a recurrent neural network. Molecules, 2017, 22(10), pii E1732.
[82]
Cao, R.; Bhattacharya, D.; Hou, J.; Cheng, J.; Deep, Q.A. Improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics, 2016, 17(1), 495.
[83]
Liu, G.; Xu, Y.; Jiang, Y.; Zhang, L.; Feng, R.; Jiang, Q. PICALM rs3851179 variant confers susceptibility to alzheimer’s disease in chinese population. Mol. Neurobiol., 2017, 54(5), 3131-3136.
[84]
Liu, G.; Zhang, Y.; Wang, L.; Xu, J.; Chen, X.; Bao, Y.; Hu, Y.; Jin, S.; Tian, R.; Bai, W.; Zhou, W.; Wang, T.; Han, Z.; Zong, J.; Jiang, Q. Alzheimer’s disease rs11767557 variant regulates EPHA1 gene expression specifically in human whole blood. . J. Alzheimers Dis., 2018, 61(3), 1077-1088.
[85]
Liu, G.; Zhang, F.; Hu, Y.; Jiang, Y.; Gong, Z.; Liu, S.; Chen, X.; Jiang, Q.; Hao, J. Genetic variants and multiple sclerosis risk gene SLC9A9 expression in distinct human brain regions. Mol. Neurobiol., 2017, 54, 6820-6826.