[1]
Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 1985; 22(4): 367-77.
[2]
Rajendrakumar CSV, Suryanarayana T, Reddy AR. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 1997; 410(2-3): 201-5.
[3]
Samuel D, Kumar TKS, Ganesh G, et al. Proline inhibits aggregation during protein refolding. Protein Sci 2000; 9(2): 344-52.
[4]
Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of $Δ$1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 2000; 122(4): 1129-36.
[5]
Chen C, Dickman MB. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 2005; 102(9): 3459-64.
[6]
Sekine T, Kawaguchi A, Hamano Y, et al. Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 2007; 73(12): 4011-9.
[7]
Kaino T, Tateiwa T, Mizukami-Murata S, et al. Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 2008; 74(18): 5845-9.
[8]
Sasano Y, Haitani Y, Hashida K, et al. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker’s yeast. Microb Cell Fact 2012; 11(1): 40.
[9]
Sasano Y, Haitani Y, Ohtsu I, et al. Proline accumulation in baker’s yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 2012; 152(1): 40-3.
[10]
Sasano Y, Takahashi S, Shima J, et al. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker’s yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 2010; 138(1): 181-5.
[11]
Trotter EW, Kao CM-F, Berenfeld L, et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 2002; 277(47): 44817-25.
[12]
Steensels J, Snoek T, Meersman E, et al. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38(5): 947-95.
[13]
Rose MD, Broach JR. Cloning genes by complementation in yeast. Methods Enzymol 1991; 194: 195-230.
[14]
Tsolmonbaatar A, Hashida K, Sugimoto Y, et al. Isolation of baker’s yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int J Food Microbiol 2016; 238: 233-40.
[15]
Elbein AD, Pan YT, Pastuszak I, et al. New insights on trehalose: a multifunctional molecule. Glycobiology 2003; 13(4): 17R-27R.
[16]
Grba S, Oura E, Suomalainen H. On the formation of glycogen and trehalose in baker’s yeast. Appl Microbiol Biotechnol 1975; 2(1): 29-37.
[17]
Gélinas P, Fiset G, LeDuy A, et al. Effect of growth conditions and trehalose content on cryotolerance of bakers’ yeast in frozen doughs. Appl Environ Microbiol 1989; 55(10): 2453-9.
[18]
Shima J, Hino A, Yamada-Iyo C, et al. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial bakers yeast. Appl Environ Microbiol 1999; 65(7): 2841-6.
[19]
Nakamura T, Takagi H, Shima J. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Cryobiology 2009; 58(2): 170-4.
[20]
Chi Z, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme Microb Technol 2001; 28(2-3): 240-5.
[21]
Berg JM, Stryer L, Tymoczko JL. Stryer Biochemie. Switzerland: Springer-Verlag 2015.
[22]
Grosjean H. DNA and RNA modification enzymes. Austin, TX: Landes Biosci 2009.
[23]
Cantara WA, Crain PF, Rozenski J, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 2010; 39(Suppl. 1): D195-201.
[24]
Lane BG. Historical perspectives on RNA nucleoside modifications.In: Modification and Editing of RNA. Washington, DC: ASM Press 1998; pp. 1-20.
[25]
Cohn WE, Volkin E. Nucleoside-5 -phosphates from ribonucleic acid. Nature 1951; 167(4247): 483-4.
[26]
Davis FF, Allen FW. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 1957; 227(2): 907-15.
[27]
Wrzesinski J, Bakin A, Ofengand J, et al. Isolation and properties of Escherichia coli 23S-RNA pseudouridine 1911, 1915, 1917 synthase (RluD). IUBMB Life 2000; 50(1): 33-7.
[28]
Raychaudhuri S, Niu L, Conrad J, et al. Functional effect of deletion and mutation of the Escherichia coli ribosomal RNA and tRNA pseudouridine synthase RluA. J Biol Chem 1999; 274(27): 18880-6.
[29]
Ma X, Yang C, Alexandrov A, et al. Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J 2005; 24(13): 2403-13.
[30]
Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997; 89(4): 565-73.
[31]
Schattner P, Barberan-Soler S, Lowe TM. A computational screen for mammalian pseudouridylation guide H/ACA RNAs. RNA 2006; 12(1): 15-25.
[32]
Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 1996; 86(5): 823-34.
[33]
Brown JWS, Clark GP, Leader DJ, et al. Multiple snoRNA gene clusters from Arabidopsis. RNA 2001; 7(12): 1817-32.
[34]
Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002; 109(2): 145-8.
[35]
Tycowski KT, Steitz JA. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 2001; 80(2): 119-25.
[36]
Schattner P, Decatur WA, Davis CA, et al. Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 2004; 32(14): 4281-96.
[37]
Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 1997; 89(5): 669-72.
[38]
Lin X, Zhang C-Y, Bai X-W, et al. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker’s yeast. Int J Food Microbiol 2015; 197: 15-21.
[39]
Shima J, Takagi H. Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Biochem 2009; 53(3): 155-64.
[40]
Attfield PV. Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 1997; 15(13): 1351-7.
[41]
Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science 1993; 259(5100): 1409-10.
[42]
Ge J, Yu Y-T. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38(4): 210-8.
[43]
Ganot P, Bortolin M-L, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 1997; 89(5): 799-809.
[44]
Newby MI, Greenbaum NL. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 2001; 7(6): 833-45.
[45]
Venema J, Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 1995; 11(16): 1629-50.