[1]
Ford, R.C.; Kamis, A.B.; Kerr, I.D.; Callaghan, R. The ABC
transporters: Structural insights into drug transport. Transporters as
Drug Carriers, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim. 2010, 1-48.
[2]
Abbasi, M.M.; Valizadeh, H.; Hamishekar, H.; Mohammadnejad, L.; Zakeri-Milani, P. The effects of cetirizine on P-glycoprotein expression and function in vitro and in situ. Adv. Pharm. Bull., 2016, 6(1), 111-118.
[3]
Liu, H.; Ma, Z.; Wu, B. Structure-activity relationships and in silico models of P-glycoprotein (ABCB1) inhibitors. Xenobiotica, 2013, 43(11), 1018-1026.
[4]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[5]
Dearden, J.C. Whither QSAR? Pharm. Sci., 2017, 23(2), 82-83.
[6]
Jafari, B.; Hamzeh-Mivehroud, M.; Alizadeh, A.A.; Sharifi, M.; Dastmalchi, S. An alignment-independent 3D-QSAR study of FGFR2 tyrosine kinase inhibitors. Adv. Pharm. Bull., 2017, 7(3), 409-418.
[7]
Sarkhosh, M.; Khorshidi, N.; Niazi, A.; Leardi, R. Application of genetic algorithms for pixel selection in multivariate image analysis for a QSAR study of trypanocidal activity for quinone compounds and design new quinone compounds. Chemom. Intell. Lab. Syst., 2014, 139, 168-174.
[8]
Veyseh, S.; Hamzehali, H.; Niazi, A.; Ghasemi, J.B. Application of multivariate image analysis in QSPR study of pKa of various acids by principal components-least squares support vector machine. J. Chil. Chem. Soc., 2015, 60(3), 2985-2987.
[9]
Ottavian, M.; Barolo, M.; García-Muñoz, S. Multivariate image and texture analysis to investigate the erosion mechanism of film-coated tablets: An industrial case study. J. Pharm. Innov., 2014, 9(1), 5-15.
[10]
Guimarães, M.C.; da Mota, E.G.; Silva, D.G.; Freitas, M.P. Aug-MIA-QSPR modelling of the toxicities of anilines and phenols to Vibrio fischeri and Pseudokirchneriella subcapitata. Chemom. Intell. Lab. Syst., 2014, 134, 53-57.
[11]
Goodarzi, M.; Freitas, M.P. Predicting boiling points of aliphatic alcohols through multivariate image analysis applied to quantitative structure- property relationships. J. Phys. Chem. A, 2008, 112(44), 11263-11265.
[12]
Bitencourt, M.; Freitas, M.P.; Rittner, R. The MIA‐QSAR method for the prediction of bioactivities of possible acetylcholinesterase inhibitors. Archiv. der. Pharmazie., 2012, 345(9), 723-728.
[13]
Garkani-Nejad, Z.; Poshteh-Shirani, M. Prediction of antihypertensive activity of pyridazinone derivatives through multivariate image analysis applied to QSAR. Med. Chem. Res., 2013, 22(7), 3389-3397.
[14]
Goodarzi, M. P Freitas, M. MIA-QSAR coupled to different regression methods for the modeling of antimalarial activities of 2-aziridinyl and 2, 3-bis-(aziridinyl)-1, 4-naphtoquinonyl sulfate and acylate derivatives. Med. Chem., 2011, 7(6), 645-654.
[15]
Nunes, C.A.; Freitas, M.P. Introducing new dimensions in MIA-QSAR: A case for chemokine receptor inhibitors. Eur. J. Pharm. Sci., 2013, 62, 297-300.
[16]
Shahlaei, M.; Pourhossein, A. A 2D image-based method for modeling some c-Src tyrosine kinase inhibitors. Med. Chem. Res., 2013, 22(6), 3012-3025.
[17]
Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta, 1986, 185, 1-17.
[18]
Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D.; Karelson, M.; Kahn, I.; Dobchev, D.A. Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction. Chem. Rev., 2010, 110(10), 5714-5789.
[19]
Shayanfar, A.; Ghasemi, S.; Soltani, S.; Asadpour-Zeynali, K.J.; Doerksen, R.; Jouyban, A. Quantitative structure-activity relationships of imidazole-containing farnesyltransferase inhibitors using different chemometric methods. Med. Chem., 2013, 9(3), 434-448.
[20]
Roy, K.; Mandal, A.S. Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 980-995.
[21]
Wong, I.L.; Wang, B-C.; Yuan, J.; Duan, L-X.; Liu, Z.; Liu, T.; Li, X-M.; Hu, X.; Zhang, X-Y.; Jiang, T. Potent and nontoxic chemosensitizer of p-glycoprotein-mediated multidrug resistance in cancer: Synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives. J. Med. Chem., 2015, 58(11), 4529-4549.
[22]
Soltani, S.; Abolhasani, H.; Zarghi, A.; Jouyban, A. QSAR analysis of diaryl COX-2 inhibitors: Comparison of feature selection and train-test data selection methods. Eur. J. Med. Chem., 2010, 45(7), 2753-2760.
[23]
Daszykowski, M.; Serneels, S.; Kaczmarek, K.; Van Espen, P.; Croux, C.; Walczak, B. TOMCAT: A MATLAB toolbox for multivariate calibration techniques. Chemom. Intell. Lab. Syst., 2007, 85(2), 269-277.
[24]
Alexander, D.; Tropsha, A.; Winkler, D.A. Beware of R 2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model., 2015, 55(7), 1316-1322.
[25]
Shayanfar, S.; Shayanfar, A.; Ghandadi, M. Image‐based analysis to predict the activity of tariquidar analogs as p‐glycoprotein inhibitors: The importance of external validation. Archiv. der. Pharmazie., 2016, 349(2), 124-131.
[26]
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model., 2011, 51(9), 2320-2335.
[27]
Dearden, J.; Cronin, M.; Kaiser, K. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res., 2009, 20(3-4), 241-266.
[28]
Parveen, Z.; Brunhofer, G.; Jabeen, I.; Erker, T.; Chiba, P.; Ecker, G.F. Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein. Bioorg. Med. Chem., 2014, 22(7), 2311-2319.
[29]
Sousa, I.J.; Ferreira, M.J.U.; Molnár, J.; Fernandes, M.X. QSAR studies of macrocyclic diterpenes with P-glycoprotein inhibitory activity. Eur. J. Pharm. Sci., 2013, 48(3), 542-553.
[30]
Ghandadi, M.; Shayanfar, A.; Hamzeh-Mivehroud, M.; Jouyban, A. Quantitative structure activity relationship and docking studies of imidazole-based derivatives as P-glycoprotein inhibitors. Med. Chem. Res., 2014, 23(11), 4700-4712.