[1]
Asif, M. A mini review: Biological significances of nitrogen hetero atom containing heterocyclic compounds. Int. J. Bioorg. Chem., 2017, 2(3), 146-152.
[2]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[3]
Czaplinska, B.; Maron, A.; Malecki, J.G.; Gorol, G.S.; Matussek, M.; Malarz, K.; Wilczkiewicz, A.M.; Danikiewicz, W.; Musiol, R.; Slodek, A. Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes Pigm., 2017, 144, 119-132.
[4]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[5]
Lee, C.H.; Lee, H.S. Relaxant effects of quinoline derivatives on histamine-induced contraction of the Guinea pig trachea. J. Korean Soc. Appl. Biol. Chem., 2011, 54(1), 118-123.
[6]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[7]
Khelifi, I.; Naret, T.; Renko, D.; Hamze, A.; Bernadat, G.; Bignon, J. lenoir, C.; Dubois, J.; Brion, J.–D.; Provot, O.; Alami, M. Design, synthesis and anticancer properties of Iso Combreta Quinolines as potent tubilin assembly inhibitors. Eur. J. Med. Chem., 2017, 127, 1025-1034.
[8]
Yadav, G.D.; Kumbhar, R.P.; Helder, S. A facile solvent-free skraup cyclization reaction for synthesis of 2, 2, 4-trimethyl-1, 2-dihydroquinoline. Int. Rev. Chem. Eng., 2012, 4(6), 597-607.
[9]
Palimkar, S.S.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid-promoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. J. Org. Chem., 2003, 68(24), 9371-9378.
[10]
Brouet, J-C.; Gu, S.; Peet, N.P.; Williams, J.D. Survey of solvents for the Conrad-Limpach synthesis of 4-hydroxyquinolones. Synth. Commun., 2009, 39(9), 1563-1569.
[11]
Denmark, S.E.; Venkatraman, S. On the mechanism of Skraup-Doebner-Von-Miller quinoline synthesis. J. Org. Chem., 2006, 71(4), 1668-1676.
[12]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57(1), 110-112.
[13]
Alyamkina, E.A.; Yamashkin, S.A.; Artayeva, N.N.; Yorovskaya, M.A. Using of 4-amino-2-phenylindoles in the synthesis of pyrroloquinolines by the Combes reaction. Mos Univ. Chem. Bull., 2010, 65(5), 335-340.
[14]
Lekhok, K.C.; Bhuyan, D.; Prajapati, D.; Boruah, R.C. Zinc triflate: a highly efficient reusable catalyst in the synthesis of functionalized quinolines via Friedlander annulation. Mol. Div., 2010, 14(4), 841-846.
[15]
Zade, G.D.; Dhoble, S.J.; Raut, S.B.; Pode, R.B. Synthesis and Characterization of Chlorine-methoxy-diphenylquinoline (Cl-MO-DPQ) and Chlorine-methyl-diphenylquinoline (Cl-M-DPQ) Blue Emitting Organic Phosphors. J. Mod. Phys., 2011, 2, 1523-1529.
[16]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedlander synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian. J. Chem., 2016, 9(1), S433-S439.
[17]
Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: a green perspective. ACS Sustain. Chem. Eng., 2016, 4(8), 4064-4078.
[18]
Jadhav, S.J.; Patil, R.B.; Kumbhar, D.R.; Patravale, A.A.; Chandam, D.R.; Deshmukh, M.B. Sulfamic acid catalyzed atom economic, eco‐friendly synthesis of novel 7‐(Aryl)‐10‐thioxo‐7,9,10,11‐tetrahedro‐6H‐pyrimido‐ [5′4′:5,6]pyrano[3,2‐c]quinoline‐6,8(5H)‐dione and its Derivatives. J. Heterocycl. Chem., 2017, 54(4), 2206-2215.
[19]
Chen, M-M.; Zhang, M.; Xie, F.; Wang, X-T. Convenient synthesis of novel heteroatom-substituted quinolines via Friedlander annulation using phosphotungstic acid as a reusable catalyst. Monatsh. Chem., 2015, 146, 663-671.
[20]
Pandit, R.P.; Lee, Y.R. Copper(II) triflate-catalyzed reactions for the synthesis of novel and diverse quinoline carboxylates. RSC Adv, 2013, 3(44), 22039-22045.
[21]
Yamazaki, S.; Takebayashi, M.; Miyazaki, K. Zn(OTf)2-catalyzed reactions of ethane tricarboxylates with 2-aminobenzaldehydes leading to tetrahydroquinoline derivatives. J. Org. Chem., 2010, 75(4), 1188-1196.
[22]
Yadav, J.S.; Reddy, B.V.S.; Premalatha, K. Bi(OTf)3-catalyzed Friedlander hetero-annulation: a rapid synthesis of 2,3,4-trisubstituted quinolines. Synlett, 2004, 6, 963-966.
[23]
Hosseini-Sarvari, M. Commercial ZrO2 as a new, efficient and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Can. J. Chem., 2009, 87(8), 1122-1126.
[24]
Yoichiro, K.; Yuichi, I.; Kazuhiko, T. Copper(I)- and gold(I)-catalyzed synthesis of 2,4-disubstituted quinoline derivatives from N-aryl-2-propynylamines. Chem. Lett., 2007, 36(12), 1422-1423.
[25]
Li, X.; Mao, Z.; Wang, Y.; Chen, W.; Lin, X. Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes and alkynes. Tetrahedron, 2011, 67(21), 3858-3862.
[26]
Mi, X.; Chen, J.; Xu, L. FeCl3-catalyzed SF5-containing quinoline synthesis: three component coupling reactions of SF5-anilines, aldehydes and alkynes. Eur. J. Org. Chem., 2015, 2015, 1415-1418.
[27]
Yao, C.; Qin, B.; Zhang, H.; Lu, J.; Wang, D.; Tu, S. One-pot solvent-free synthesis of quinolines by C-H activation/ C-C bond formation catalyzed by recyclable iron(III) triflate. RSC Adv, 2012, 2, 3759-3764.
[28]
Luo, Y.; Pan, X.; Wu, J. Efficient synthesis of 5H-cyclopenta[c]quinoline derivatives via palladium catalyzed domino reactions of o-alkynyl halobenzene with amine. Org. Lett., 2011, 13(5), 1150-1153.
[29]
Le, Z-G.; Liang, M.; Chen, Z-S.; Zhang, S-H.; Xie, Z-B. Ionic liquid as an efficient medium for the synthesis of quinoline derivatives via α-chymotrypsin-catalyzed Friedlander condensation. Molecules, 2017, 22(5), 762-769.
[30]
Akbari, J.; Heydari, A.; Kalhor, H.R.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12, 137-140.
[31]
Singhal, A.; Kumari, P.; Chauhan, S.M.S. Friedlander synthesis of quinolines in presence of sulfonylimidazolium salts. Curr. Organocatal., 2017, 4, 182-188.
[32]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev., 2014, 114, 6179-6212.
[33]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Non-covalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[34]
Anshuman, A.; Yarahmadi, S.S.; Vaidhyanathan, B. Enhanced catalytic performance of reduced graphene oxide-TiO2 hybrids for efficient water treatment using microwave irradiation. RSC Adv, 2018, 8, 7709-7715.
[35]
Pyun, J. Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed., 2011, 50(1), 46-48.
[36]
Nguyen, V.C.; Bui, N.Q.; Mascunan, P.; Vu, T.T.H.; Fongarland, P.; Essayem, N. Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide. Appl. Catal. A General., 2018, 552, 184-191.
[37]
Cui, Y.; Lee, Y.H.; Yang, J.W. Impact of carboxyl groups in graphene oxide on chemoselective alcohol oxidation with ultra-low carbocatalyst loading. Sci. Rep., 2017, 7, 3146-3154.
[38]
Zhao, Q.; Bai, C.; Zhang, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex. Ind. Eng. Chem. Res., 2014, 53(11), 4232-4238.
[39]
Dreyer, D.R.; Jia, H.P.; Todd, A.D.; Geng, J.; Bielawski, C.W. Graphite oxide: A selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem., 2011, 9(21), 7292-7295.
[40]
Gao, Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.; Wang, J.; Ma, D. Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed., 2016, 55(9), 3124-3128.
[41]
Jia, H-P.; Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an auto-tandem oxidation-hydration-Aldol coupling catalyst. Adv. Synth. Catal., 2011, 353(4), 528-532.
[42]
Kausar, N.; Roy, I.; Chattopadhyay, D.; Das, A.R. Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium: “On-water” synthesis accompanied by carbocatalysis and selective C-C bond cleavage. RSC Adv, 2016, 6, 22320-22331.
[43]
Zhang, M.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[44]
Zhang, M.; Liu, P.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv, 2016, 6, 106160-106170.
[45]
Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an olefin polymerization carbocatalyst: applications in electrochemical double layer capacitors. Adv. Funct. Mater., 2012, 22(15), 3247-3253.
[46]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4, 4806-4814.
[47]
Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri-Rad, J. Sulfuric acid-modified PEG-6000 (PEG-OSO3H): An efficient, biodegradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted synthesis of quinolines under microwave irradiation. Green Chem., 2011, 13, 958-964.
[48]
Chauhan, S.M.S.; Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules, 2011, 16, 7256-7266.
[49]
Stobinski, L.; Lesiaka, B.; Malolepszyc, A.; Mazurkiewiczc, M.; Mierzwaa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom., 2014, 195, 145-154.
[50]
Garg, B.; Bisht, T.; Ling, Y-C. Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules, 2014, 19, 14582-14614.
[51]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedlander synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian . J. Chem., 2016, 9, S433-S439.