[1]
Choubey, J.; Patel, A.; Verma, M. Phytotherapy in the treatment of arthritis: A review. Int. J. Pharma. Res. Sch, 2013, 4, 2853-2865.
[2]
McCabe, C.J.; Akehurst, R.L.; Kirsch, J.; Whitfield, M.; Backhouse, M.; Woolf, A.D.; Scott, D.L.; Emery, P.; Haslock, I. Choice of NSAID and management strategy in rheumatoid arthritis and osteoarthritis. The impact on costs and outcomes in the UK. Pharmacoeconomics, 1998, 14, 191-199.
[3]
Prasad, B.D.; Medhi, B.; Prakash, A.; Patyar, S.; Wadhwa, S. Lornoxicam: A newer NSAID. Indian J. Phys. Med. Rehabil., 2009, 20, 27-31.
[4]
Frizziero, L.; Focherini, M.; Valentini, M.; Reta, M.; Rocchi, P. Long term study on the efficacy and safety of lornoxicam in rheumatoid arthritis. Minerva Med., 2002, 93, 315-320.
[5]
Suleyman, H.; Demircan, B.; Karagoz, Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep., 2007, 59, 247-258.
[6]
Tyagi, L.K.; Kori, L.M. Stability study and in-vivo evaluation of lornoxicam loaded ethyl cellulose microspheres. Int. J. Pharm. Sci. Drug Res., 2014, 6, 26-30.
[8]
Tipton, A.; Fujita, S.; Frank, K.; Dunn, R. A biodegradable injectable delivery system for nonsteroidal anti-inflammatory drugs. Pharm. Res., 1991, 8, 196-198.
[9]
Dhakal, P.; Khadka, D.; Acharya, A. Formulation and evaluation of transdermal gel of lornoxicam and its delivery by passive and inotophoresis method: A comparative study. Int. J. Pharm. Res. Sch, 2015, 7, 810-818.
[10]
Allah, A.; Kamel, O.; Sammour, O. Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: Optimization and in vivo evaluation. Carbohydr. Polym., 2016, 149, 263-273.
[11]
Zhiyue, Z.; Guihua, H. Intra-articular lornoxicam loaded PLGA microspheres: Enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Deliv., 2012, 19, 255-263.
[12]
Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci., 2009, 71, 242-245.
[13]
Mownika, G.; Srinivas, P. Formulation and evaluation of simvastatin injectable in situ implants. Am. J. Drug Discov. Dev, 2012, 2, 87-100.
[14]
Camargo, J.; Sapin, A.; Nouvel, C.; Daloz, D.; Leonard, M.; Bonneaux, F.; Six, J.L.; Maincent, P. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: Solvent selection based on physico-chemical characterization. Drug Dev. Ind. Pharm., 2013, 39, 146-155.
[15]
Kapoor, D.N.; Katare, O.P.; Dhawan, S. In situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. Int. J. Pharm., 2012, 426, 132-143.
[16]
Islam, S. Lipophilic and hydrophilic drug loaded PLA/PLGA in situ implants: Studies on thermal behavior of drug & polymer and observation of parameters influencing drug burst release with corresponding effects on loading efficiency & morphology of implants. Int. J. Pharm. Pharm. Sci., 2011, 3, 181-188.
[17]
Ahmed, A.; Ibrahim, M.; Samy, A.M.; Kaseem, A.; Nutan, M.T.; Hussain, M.D. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: In vitro release, pharmacokinetics, and stability. AAPS PharmSciTech, 2014, 15, 772-780.
[18]
Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamics data analysis in microsoft excel. Comput. Methods Prog. Biomed., 2010, 99, 306-314.
[20]
Joshi, R.; Arora, V.; Desjardins, J.; Robinson, D.; Himmelstein, K.J.; Iversen, P.L. In vivo properties of an in situ forming gel for parenteral delivery of macromolecular drugs. Pharm. Res., 2008, 15, 1189-1195.
[21]
Zolnik, B.S.; Burgess, D.J. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J. Control. Release, 2008, 19(5), 137-145.
[22]
Patel, N.; Thakkar, V.; Moradiya, P.; Gandhi, T.; Gohel, M. Optimization of curcumin loaded vaginal in-situ hydrogel by box-behnken statistical design for contraception. J. Drug Deliv. Sci. Technol., 2015, 29, 55-69.
[23]
Gad, H.A.; El-Nabarawi, M.A.; El-Hady, S.A. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech, 2008, 9, 878-884.
[24]
Tang, Y.; Singh, J. Controlled delivery of aspirin: Effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int. J. Pharm., 2008, 357(1-2), 119-125.
[25]
Gabor, F.; Ertl, B.; Wirth, M.; Mallinger, R. Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: Influence of manufacturing parameters and type of polymer on the release characteristics. J. Microencapsul., 1999, 16, 1-12.
[26]
Deepthi, P.R.; Prasad, V.; Diwan, P.V. Preparation and in-vitro evaluation of donepezil hydrochloride sustained release matrix tablets using non-gelling polymer. J. Build. Perform. Simul., 2014, 9, 83-91.
[27]
Hamoudi-Ben Yelles, M.C.; Tan, V.T.; Danede, F.; Willart, J.F.; Siepmann, J. PLGA implants: How Poloxamer/PEO addition slows down or accelerate polymer degradation and drug release. J. Control. Drug Release, 2017, 253, 19-29.