Review Article

基于壳聚糖的聚合物基质用于药用辅料和药物递送

卷 26, 期 14, 2019

页: [2502 - 2513] 页: 12

弟呕挨: 10.2174/0929867325666180927100817

价格: $65

摘要

开发创新的药物输送系统,具有多种药物特性,具有更好的有效性和安全性,因此一直受到高度关注。壳聚糖是一种衍生自天然几丁质生物质的氨基多糖,作为新兴的药物赋形剂和药物递送实体之一,已经受到很多关注。脱乙酰壳多糖及其衍生物可用于直接压片,作为控制释放或改善溶出的崩解剂。据报道壳聚糖用于药物递送系统以产生具有增强的粘膜粘附性,渗透性,吸收性和生物利用度的药物。由于壳聚糖及其衍生物的成膜和离子性质,在水凝胶制剂中使用微球技术的药物释放机制与药物产品开发特别相关。该综述强调了壳聚糖在药物递送中的适用性和未来,特别注意药物加载和从壳聚糖基水凝胶中释放。对有利的无毒性,生物相容性,生物降解性,溶解性和分子量变化的广泛研究使得该聚合物成为开发新型药物递送系统的有吸引力的候选者,包括各种先进的治疗应用,例如基因递送,基于DNA的药物,器官特异性药物载体,癌症药物载体等

关键词: 生物聚合物,壳聚糖,药物递送,药物赋形剂,载药,药物载体水凝胶。

[1]
Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci., 2013, 38(10-11), 1629-1652. [http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008].
[2]
Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem., 2014, 16(3), 950-963. [http://dx.doi.org/10.1039/C3GC41935E].
[3]
Pan, Y. An overview of bio-based polymers for packaging materials. J. Bioresour. Bioprod, 2016, 1(3), 106-113.
[4]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32(8-9), 762-798. [http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017].
[5]
Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol., 2017, 96, 282-301. [http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095]. [PMID: 27914965].
[6]
Liu, Y.; Li, J. Advances of cyclodextrin polymers for the delivery of biotech drugs. J. Bioresour. Bioprod., 2016, 1(1), 7-17.
[7]
Li, J.; Xie, J. Smart drug delivery system based on nanocelluloses. J. Bioresour. Bioprod., 2017, 2(1), 1-3.
[8]
Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules, 2009, 14(7), 2602-2620. [http://dx.doi.org/10.3390/molecules14072602]. [PMID: 19633627].
[9]
Ward, J.H.; Peppas, N.A. Kinetic gelation modeling of controlled radical polymerizations. Macromolecules, 2000, 33(14), 5137-5142. [http://dx.doi.org/10.1021/ma000001b].
[10]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46. [http://dx.doi.org/10.1016/S0939-6411(00)00090-4]. [PMID: 10840191].
[11]
Lowman, A.; Peppas, N.; Hydrogels, E.M. Encyclopedia of controlled drug delivery; Mathiowitz, E., Ed.; , 1999, p. 397.
[12]
Singh, A.V. Biopolymers in drug delivery: A review. Pharmacologyonline, 2011, 1, 666-674.
[13]
Mondal, S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym., 2017, 163, 301-316. [http://dx.doi.org/10.1016/j.carbpol.2016.12.050]. [PMID: 28267510].
[14]
Tang, J.; Sisler, J.; Grishkewich, N.; Tam, K.C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci., 2017, 494, 397-409. [http://dx.doi.org/10.1016/j.jcis.2017.01.077]. [PMID: 28187295].
[15]
Wang, W. Fabrication and characterization of microfibrillated cellulose and collagen composite films. J. Bioresour. Bioprod., 2016, 1(4), 162-168.
[16]
Wen, Y. Improving the colloidal stability of Cellulose nano-crystals by surface chemical grafting with polyacrylic acid. J. Bioresour. Bioprod., 2016, 1(3), 114-119.
[17]
Hoppel, M.; Mahrhauser, D.; Stallinger, C.; Wagner, F.; Wirth, M.; Valenta, C. Natural polymer-stabilized multiple water-in-oil-in-water emulsions: a novel dermal drug delivery system for 5-fluorouracil. J. Pharm. Pharmacol., 2014, 66(5), 658-667. [http://dx.doi.org/10.1111/jphp.12194]. [PMID: 24372540].
[18]
Nayak, A.K.; Pal, D.; Pany, D.R.; Mohanty, B. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent. J. Adv. Pharm. Technol. Res., 2010, 1(3), 338-341. [http://dx.doi.org/10.4103/0110-5558.72430]. [PMID: 22247868].
[19]
Coviello, T.; Dentini, M.; Rambone, G.; Desideri, P.; Carafa, M.; Murtas, E.; Riccieri, F.M.; Alhaique, F. A novel co-crosslinked polysaccharide: studies for a controlled delivery matrix. J. Control. Release, 1998, 55(1), 57-66. [http://dx.doi.org/10.1016/S0168-3659(98)00028-5]. [PMID: 9795015].
[20]
Umekar, M.J.; Yeole, P.G. Characterization and evaluation of natural copal gum-resin as film forming material. Int .J. Green Pharmacy, 2008, 2(1), [IJGP]. [http://dx.doi.org/10.4103/0973-8258.39163].
[21]
Ravikumar, S.A. Studies of disintegrant properties of seed mucilage of Ocimum gratissimum. Indian J. Pharm. Sci., 2007, 69(6), 753-758. [http://dx.doi.org/10.4103/0250-474X.39428].
[22]
Avachat, A.M.; Dash, R.R.; Shrotriya, S.N. Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Ind J Pharm Edu Res, 2011, 45(1), 86-99.
[23]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007. [http://dx.doi.org/10.1016/j.polymer.2008.01.027].
[24]
Wang, S.B.; Chen, A.Z.; Weng, L.J.; Chen, M.Y.; Xie, X.L. Effect of drug-loading methods on drug load, encapsulation efficiency and release properties of alginate/poly-L-arginine/chitosan ternary complex microcapsules. Macromol. Biosci., 2004, 4(1), 27-30. [http://dx.doi.org/10.1002/mabi.200300043]. [PMID: 15468284].
[25]
Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym., 2013, 92(2), 1685-1699. [http://dx.doi.org/10.1016/j.carbpol.2012.11.021]. [PMID: 23399207].
[26]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28. [http://dx.doi.org/10.1016/j.jconrel.2004.08.010]. [PMID: 15491807].
[27]
Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm., 2012, 81(3), 463-469. [http://dx.doi.org/10.1016/j.ejpb.2012.04.007]. [PMID: 22561955].
[28]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99. [http://dx.doi.org/10.1016/j.addr.2009.07.019]. [PMID: 19799949].
[29]
Lavall, R.L.; Assis, O.B.; Campana-Filho, S.P. β-chitin from the pens of Loligo sp.: extraction and characterization. Bioresour. Technol., 2007, 98(13), 2465-2472. [http://dx.doi.org/10.1016/j.biortech.2006.09.002]. [PMID: 17070041].
[30]
Kjartansson, G.T.; Zivanovic, S.; Kristbergsson, K.; Weiss, J. Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). J. Agric. Food Chem., 2006, 54(16), 5894-5902. [http://dx.doi.org/10.1021/jf060646w]. [PMID: 16881692].
[31]
Chang, K.L.B.; Tsai, G. Response surface optimization and kinetics of isolating chitin from pink shrimp (Solenocera melantho) shell waste. J. Agric. Food Chem., 1997, 45(5), 1900-1904. [http://dx.doi.org/10.1021/jf9606870].
[32]
Mojarrad, J.S.; Nemati, M.; Valizadeh, H.; Ansarin, M.; Bourbour, S. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J. Agric. Food Chem., 2007, 55(6), 2246-2250. [http://dx.doi.org/10.1021/jf062983a]. [PMID: 17311400].
[33]
Xu, Y.; Gallert, C.; Winter, J. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl. Microbiol. Biotechnol., 2008, 79(4), 687-697. [http://dx.doi.org/10.1007/s00253-008-1471-9]. [PMID: 18418590].
[34]
Cira, L.A. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem., 2002, 37(12), 1359-1366. [http://dx.doi.org/10.1016/S0032-9592(02)00008-0].
[35]
Wang, S-L.; Chang, T-J.; Liang, T-W. Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 2010, 21(3), 321-333. [http://dx.doi.org/10.1007/s10532-009-9303-x]. [PMID: 19838810].
[36]
Synowiecki, J.; Al-Khateeb, N.A.A.Q. The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem., 2000, 68(2), 147-152. [http://dx.doi.org/10.1016/S0308-8146(99)00165-X].
[37]
Hobel, C.F. Access to biodiversity and new genes from thermophiles by special enrichment methods; University of Iceland, Faculty of Sciences, Department of Biology, 2004.
[38]
Jo, G-H. Enzymatic production of chitin from crustacean shell waste. Chitin Chitosan, Oligosaccharides and their Derivatives: Biological Activities and Applications; CRC Press Taylor & Francis Group: Boca Raton, London, New York, 2010, pp. 37-45.
[39]
Cho, Y.I.; No, H.K.; Meyers, S.P. Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem., 1998, 46(9), 3839-3843. [http://dx.doi.org/10.1021/jf971047f].
[40]
Handayani, A.D. Sutrisno; Indraswati, N.; Ismadji, S. Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: studies of extraction kinetics and thermodynamic. Bioresour. Technol., 2008, 99(10), 4414-4419. [http://dx.doi.org/10.1016/j.biortech.2007.08.028]. [PMID: 17911016].
[41]
Sachindra, N.M.; Bhaskar, N.; Siddegowda, G.S.; Sathisha, A.D.; Suresh, P.V. Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol., 2007, 98(8), 1642-1646. [http://dx.doi.org/10.1016/j.biortech.2006.05.041]. [PMID: 16828548].
[42]
Statistics, P. Food and Agriculture organization of the United Nations; Rome, 1997.
[43]
Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 2012, 17(4), 4604-4611. [http://dx.doi.org/10.3390/molecules17044604]. [PMID: 22510609].
[44]
Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature, 2015, 524(7564), 155-157. [http://dx.doi.org/10.1038/524155a]. [PMID: 26268177].
[45]
Íslandsbanki, Canada Seafood Market Report 2012.
[46]
Synowiecki, J.; Al-Khateeb, N.A. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr., 2003, 43(2), 145-171. [http://dx.doi.org/10.1080/10408690390826473].
[47]
Hein, S. Chitosan composites for biomedical applications: status, challenges and perspectives. Mater. Sci. Technol., 2008, 24(9), 1053-1061. [http://dx.doi.org/10.1179/174328408X341744].
[48]
Huq, T. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads. Radiat. Phys. Chem., 2012, 81(8), 945-948. [http://dx.doi.org/10.1016/j.radphyschem.2011.11.055].
[49]
Muzzarelli, R.A. Chitin; Elsevier, 2013.
[50]
Muzzarelli, R. Medical and veterinary applications of chitin and chitosan. Advances in Chitin Science; Jacques Andre Publishers: Lyon, 1997, pp. 580-589.
[51]
Wang, Z. Stability of partially deacetylated chitin nano-fiber dispersions mediated by protonic acids. J. Bioresour. Bioprod., 2016, 1(3)
[52]
Aranaz, I. Functional characterization of chitin and chitosan. Curr. Chem. Biol., 2009, 3(2), 203-230.
[53]
Yi, H.; Wu, L.Q.; Bentley, W.E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne, G.F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6), 2881-2894. [http://dx.doi.org/10.1021/bm050410l]. [PMID: 16283704].
[54]
Cho, Y-W.; Jang, J.; Park, C.R.; Ko, S.W. Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules, 2000, 1(4), 609-614. [http://dx.doi.org/10.1021/bm000036j]. [PMID: 11710189].
[55]
Rinaudo, M.; Pavlov, G.; Desbrieres, J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer (Guildf.), 1999, 40(25), 7029-7032. [http://dx.doi.org/10.1016/S0032-3861(99)00056-7].
[56]
Kim, K.M. Properties of chitosan films as a function of pH and solvent type. J. Food Sci., 2006, 71(3), E119-E124. [http://dx.doi.org/10.1111/j.1365-2621.2006.tb15624.x].
[57]
Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678. [http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001].
[58]
Shrinivas Rao, M. Optimum parameters for production of chitin and chitosan from squilla (S. empusa). J. Appl. Polym. Sci., 2007, 103(6), 3694-3700. [http://dx.doi.org/10.1002/app.24840].
[59]
Muzzarelli, R.A. Chitin and its derivatives: new trends of applied research. Carbohydr. Polym., 1983, 3(1), 53-75. [http://dx.doi.org/10.1016/0144-8617(83)90012-7].
[60]
Domard, A.; Rinaudo, M. Preparation and characterization of fully deacetylated chitosan. Int. J. Biol. Macromol., 1983, 5(1), 49-52. [http://dx.doi.org/10.1016/0141-8130(83)90078-8].
[61]
Brugnerotto, J. Overview on structural characterization of chitosan molecules in relation with their behavior in solution. in Macromolecular Symposia.Wiley-Blackwell, 111 River Street Hoboken NJ 07030-5774 USA. 2001.
[62]
Kurita, K.; Kamiya, M.; Nishimura, S-I. Solubilization of a rigid polysaccharide: controlled partial N-acetylation of chitosan to develop solubility. Carbohydr. Polym., 1991, 16(1), 83-92. [http://dx.doi.org/10.1016/0144-8617(91)90072-K].
[63]
Philippova, O.E.; Volkov, E.V.; Sitnikova, N.L.; Khokhlov, A.R.; Desbrieres, J.; Rinaudo, M. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules, 2001, 2(2), 483-490. [http://dx.doi.org/10.1021/bm005649a]. [PMID: 11749210].
[64]
Machida, Y.; Nagai, T.; Abe, M.; Sannan, T. Use of chitosan and hydroxypropylchitosan in drug formulations to effect sustained release. Drug Des. Deliv., 1986, 1(2), 119-130. [PMID: 3509325].
[65]
Kotzé, A. Chitosans for enhanced delivery of therapeutic peptides across intestinal epithelia: In vitro evaluation in Caco-2 cell monolayers. Int. J. Pharm., 1997, 159(2), 243-253. [http://dx.doi.org/10.1016/S0378-5173(97)00287-1].
[66]
Kotzé, A.F.; Luessen, H.L.; de Leeuw, B.J.; de Boer, B.G.; Verhoef, J.C.; Junginger, H.E. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res., 1997, 14(9), 1197-1202. [http://dx.doi.org/10.1023/A:1012106907708]. [PMID: 9327448].
[67]
Kashyap, N.; Kumar, N.; Kumar, M.R. Hydrogels for pharmaceutical and biomedical applications. Crit. Rev.™ Therap. Drug Carr. Syst., 2005, 22(2) [http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10].
[68]
Bos, G.W.; Jacobs, J.J.; Koten, J.W.; Van Tomme, S.; Veldhuis, T.; van Nostrum, C.F.; Den Otter, W.; Hennink, W.E. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur. J. Pharm. Sci., 2004, 21(4), 561-567. [http://dx.doi.org/10.1016/j.ejps.2003.12.007]. [PMID: 14998588].
[69]
Harada, A.; Li, J.; Kamachi, M. Double-stranded inclusion complexes of cyclodextrin threaded on poly (ethylene glycol). Nature, 1994, 370(6485), 126-128. [http://dx.doi.org/10.1038/370126a0].
[70]
Hirano, S. Chitosan: a biocompatible material for oral and intravenous administrationsProgress in biomedical polymers; Springer, 1990, pp. 283-290.
[71]
Muzzarelli, R.A. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci., 1997, 53(2), 131-140. [http://dx.doi.org/10.1007/PL00000584]. [PMID: 9118001].
[72]
Denkbas, E.B.; Ottenbrite, R.M. Perspectives on: chitosan drug delivery systems based on their geometries. J. Bioact. Compat. Polym., 2006, 21(4), 351-368. [http://dx.doi.org/10.1177/0883911506066930].
[73]
Fakhari, A.; Anand Subramony, J. Engineered in-situ depotforming hydrogels for intratumoral drug delivery. J. Control. Release., 2015, 220(Pt A), 465-475. [http://dx.doi.org/10.1016/j.jconrel.2015.11.014]. [PMID: 26585504].
[74]
Kempe, S.; Mäder, K. In situ forming implants - an attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679. [http://dx.doi.org/10.1016/j.jconrel.2012.04.016]. [PMID: 22543012].
[75]
Almeida, H.; Amaral, M.H.; Lobão, P.; Lobo, J.M. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov. Today, 2014, 19(4), 400-412. [http://dx.doi.org/10.1016/j.drudis.2013.10.001]. [PMID: 24120893].
[76]
Wang, X. In situ gel-forming system: an attractive alternative for nasal drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2013, 30(50) [http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007362].
[77]
Wanka, G.; Hoffmann, H.; Ulbricht, W. The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym. Sci., 1990, 268(2), 101-117. [http://dx.doi.org/10.1007/BF01513189].
[78]
Stile, R.A.; Burghardt, W.R.; Healy, K.E. Synthesis and characterization of injectable poly (N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules, 1999, 32(22), 7370-7379. [http://dx.doi.org/10.1021/ma990130w].
[79]
Jeong, B.; Choi, Y.K.; Bae, Y.H.; Zentner, G.; Kim, S.W. New biodegradable polymers for injectable drug delivery systems. J. Control. Release, 1999, 62(1-2), 109-114. [http://dx.doi.org/10.1016/S0168-3659(99)00061-9]. [PMID: 10518642].
[80]
Wanka, G.; Hoffmann, H.; Ulbricht, W. The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym. Sci., 1990, 268(2), 101-117. [http://dx.doi.org/10.1007/BF01513189].
[81]
Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D.; Leroux, J.C.; Atkinson, B.L.; Binette, F.; Selmani, A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000, 21(21), 2155-2161. [http://dx.doi.org/10.1016/S0142-9612(00)00116-2]. [PMID: 10985488].
[82]
Schatz, C.; Viton, C.; Delair, T.; Pichot, C.; Domard, A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules, 2003, 4(3), 641-648. [http://dx.doi.org/10.1021/bm025724c]. [PMID: 12741780].
[83]
Chen, J.P.; Cheng, T.H. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci., 2006, 6(12), 1026-1039. [http://dx.doi.org/10.1002/mabi.200600142]. [PMID: 17128421].
[84]
Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 2005, 103(3), 609-624. [http://dx.doi.org/10.1016/j.jconrel.2004.12.019]. [PMID: 15820408].
[85]
Chen, S-C.; Wu, Y.C.; Mi, F.L.; Lin, Y.H.; Yu, L.C.; Sung, H.W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release, 2004, 96(2), 285-300. [http://dx.doi.org/10.1016/j.jconrel.2004.02.002]. [PMID: 15081219].
[86]
Lee, S.J.; Kim, S.S.; Lee, Y.M. Interpenetrating polymer network hydrogels based on poly (ethylene glycol) macromer and chitosan. Carbohydr. Polym., 2000, 41(2), 197-205. [http://dx.doi.org/10.1016/S0144-8617(99)00088-0].
[87]
Yao, K.D. The dynamic swelling behaviour of chitosan‐based hydrogels. Polym. Int., 1998, 45(2), 191-194. [http://dx.doi.org/10.1002/(SICI)1097-0126(199802)45:2<191:AID-PI892>3.0.CO;2-K].
[88]
She, Z.; Jin, C.; Huang, Z.; Zhang, B.; Feng, Q.; Xu, Y. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J. Mater. Sci. Mater. Med., 2008, 19(12), 3545-3553. [http://dx.doi.org/10.1007/s10856-008-3526-y]. [PMID: 18622765].
[89]
Wang, M.; Fang, Y.; Hu, D. Preparation and properties of chitosan-poly (N-isopropylacrylamide) full-IPN hydrogels. React. Funct. Polym., 2001, 48(1), 215-221. [http://dx.doi.org/10.1016/S1381-5148(01)00057-8].
[90]
Tessmar, J.K.; Göpferich, A.M. Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 274-291. [http://dx.doi.org/10.1016/j.addr.2007.03.020]. [PMID: 17544542].
[91]
Holland, T.A.; Tessmar, J.K.; Tabata, Y.; Mikos, A.G. Transforming growth factor-β 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release, 2004, 94(1), 101-114. [http://dx.doi.org/10.1016/j.jconrel.2003.09.007]. [PMID: 14684275].
[92]
Kohane, D.S.; Langer, R. Polymeric biomaterials in tissue engineering. Pediatr. Res., 2008, 63(5), 487-491. [http://dx.doi.org/10.1203/01.pdr.0000305937.26105.e7]. [PMID: 18427292].
[93]
Lin, C-C.; Anseth, K.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res., 2009, 26(3), 631-643. [http://dx.doi.org/10.1007/s11095-008-9801-2]. [PMID: 19089601].
[94]
Sokker, H. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr. Polym., 2009, 75(2), 222-229. [http://dx.doi.org/10.1016/j.carbpol.2008.06.015].
[95]
Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998, 31(23), 8382-8395. [http://dx.doi.org/10.1021/ma980765f].
[96]
Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev., 2001, 48(2-3), 139-157. [http://dx.doi.org/10.1016/S0169-409X(01)00112-0]. [PMID: 11369079].
[97]
Matsusaki, M.; Sakaguchi, H.; Serizawa, T.; Akashi, M. Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J. Biomater. Sci. Polym. Ed., 2007, 18(6), 775-783. [http://dx.doi.org/10.1163/156856207781034160]. [PMID: 17623557].
[98]
Jain, A.; Gupta, Y.; Jain, S.K. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J. Pharm. Pharm. Sci., 2007, 10(1), 86-128. [PMID: 17498397].
[99]
Sinha, V.R.; Kumria, R. Polysaccharides in colon-specific drug delivery. Int. J. Pharm., 2001, 224(1-2), 19-38. [http://dx.doi.org/10.1016/S0378-5173(01)00720-7]. [PMID: 11472812].
[100]
Bernkop-Schnürch, A. Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev., 2005, 57(11), 1569-1582. [http://dx.doi.org/10.1016/j.addr.2005.07.002]. [PMID: 16176846].
[101]
Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci., 2001, 26(9), 1921-1971. [http://dx.doi.org/10.1016/S0079-6700(01)00007-7].
[102]
Tozaki, H.; Komoike, J.; Tada, C.; Maruyama, T.; Terabe, A.; Suzuki, T.; Yamamoto, A.; Muranishi, S. Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J. Pharm. Sci., 1997, 86(9), 1016-1021. [http://dx.doi.org/10.1021/js970018g]. [PMID: 9294815].
[103]
Muzzarelli, R.M. Belmonte, and R. Giardino, Osteoinduction by Chitosan-Complexed BMP: Morpho-Structural Responses in an osteoporotic model. J. Bioact. Compat. Polym., 1997, 12.
[104]
Patel, M.; Mao, L.; Wu, B.; Vandevord, P.J. GDNF-chitosan blended nerve guides: a functional study. J. Tissue Eng. Regen. Med., 2007, 1(5), 360-367. [http://dx.doi.org/10.1002/term.44]. [PMID: 18038430].
[105]
Cao, Y.; Zhang, C.; Shen, W.; Cheng, Z.; Yu, L.L.; Ping, Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release, 2007, 120(3), 186-194. [http://dx.doi.org/10.1016/j.jconrel.2007.05.009]. [PMID: 17582643].
[106]
Ruel-Gariépy, E.; Shive, M.; Bichara, A.; Berrada, M.; Le Garrec, D.; Chenite, A.; Leroux, J.C. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur. J. Pharm. Biopharm., 2004, 57(1), 53-63. [http://dx.doi.org/10.1016/S0939-6411(03)00095-X]. [PMID: 14729080].
[107]
Obara, K.; Ishihara, M.; Ozeki, Y.; Ishizuka, T.; Hayashi, T.; Nakamura, S.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Takase, B.; Ishihara, M.; Kikuchi, M.; Maehara, T. Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J. Control. Release, 2005, 110(1), 79-89. [http://dx.doi.org/10.1016/j.jconrel.2005.09.026]. [PMID: 16289419].
[108]
Han, H.D.; Song, C.K.; Park, Y.S.; Noh, K.H.; Kim, J.H.; Hwang, T.; Kim, T.W.; Shin, B.C. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int. J. Pharm., 2008, 350(1-2), 27-34. [http://dx.doi.org/10.1016/j.ijpharm.2007.08.014]. [PMID: 17897800].
[109]
Ammar, H.O.; Salama, H.A.; El-Nahhas, S.A.; Elmotasem, H. Design and evaluation of chitosan films for transdermal delivery of glimepiride. Curr. Drug Deliv., 2008, 5(4), 290-298. [http://dx.doi.org/10.2174/156720108785915005]. [PMID: 18855598].
[110]
Park, C.J.; Clark, S.G.; Lichtensteiger, C.A.; Jamison, R.D.; Johnson, A.J. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater., 2009, 5(6), 1926-1936. [http://dx.doi.org/10.1016/j.actbio.2009.03.002]. [PMID: 19342320].
[111]
Obara, K.; Ishihara, M.; Ishizuka, T.; Fujita, M.; Ozeki, Y.; Maehara, T.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Kikuchi, M.; Kurita, A. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials, 2003, 24(20), 3437-3444. [http://dx.doi.org/10.1016/S0142-9612(03)00220-5]. [PMID: 12809772].
[112]
Heiati, H.; Phillips, N.C.; Tawashi, R. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm. Res., 1996, 13(9), 1406-1410. [http://dx.doi.org/10.1023/A:1016090420759]. [PMID: 8893283].
[113]
Yang, Y.Y.; Wang, Y.; Powell, R.; Chan, P. Polymeric core-shell nanoparticles for therapeutics. Clin. Exp. Pharmacol. Physiol., 2006, 33(5-6), 557-562. [http://dx.doi.org/10.1111/j.1440-1681.2006.04408.x]. [PMID: 16700894].
[114]
Zhang, Y.; Zhuo, R.X. Synthesis and drug release behavior of poly (trimethylene carbonate)-poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles. Biomaterials, 2005, 26(14), 2089-2094. [http://dx.doi.org/10.1016/j.biomaterials.2004.06.004]. [PMID: 15576183].
[115]
Yang, T-C.; Chou, C-C.; Li, C-F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int. J. Food Microbiol., 2005, 97(3), 237-245. [http://dx.doi.org/10.1016/S0168-1605(03)00083-7]. [PMID: 15582734].
[116]
Upadrashta, S.M.; Katikaneni, P.R.; Nuessle, N.O. Chitosan as a tablet binder. Drug Dev. Ind. Pharm., 1992, 18(15), 1701-1708. [http://dx.doi.org/10.3109/03639049209040896].
[117]
Nagai, T.; Sawayanagi, Y.; Nambu, N. Applications of chitin and chitosan to pharmaceutical preparations; Chitin, Chitosan and Related Enzymes, 1984, pp. 21-39. [http://dx.doi.org/10.1016/B978-0-12-780950-2.50008-3]
[118]
Fini, A.; Orienti, I. The role of chitosan in drug delivery. Am. J. Drug Deliv., 2003, 1(1), 43-59. [http://dx.doi.org/10.2165/00137696-200301010-00004].
[119]
Nascimento, A.; Laranjeira, M.C.; Fávere, V.T.; Josué, A. Impregnation and release of aspirin from chitosan/poly(acrylic acid) graft copolymer microspheres. J. Microencapsul., 2001, 18(5), 679-684. [http://dx.doi.org/10.1080/02652040010019451]. [PMID: 11508772].
[120]
Sezer, A.D.; Akbuğa, J. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul., 1999, 16(6), 687-696. [http://dx.doi.org/10.1080/026520499288636]. [PMID: 10575621].
[121]
Sezer, A.D.; Akbuğa, J. Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J. Microencapsul., 1999, 16(2), 195-203. [http://dx.doi.org/10.1080/026520499289176]. [PMID: 10080113].
[122]
Ma, Z.; Yeoh, H.H.; Lim, L.Y. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J. Pharm. Sci., 2002, 91(6), 1396-1404. [http://dx.doi.org/10.1002/jps.10149]. [PMID: 12115839].
[123]
Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm., 2004, 57(1), 1-8. [http://dx.doi.org/10.1016/S0939-6411(03)00155-3]. [PMID: 14729076].
[124]
Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; Noker, P.; Yao, R.; Labao, E.; Hawkins, M.; Soon-Shiong, P. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res., 2006, 12(4), 1317-1324. [http://dx.doi.org/10.1158/1078-0432.CCR-05-1634]. [PMID: 16489089].
[125]
Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: part II. Therapeutic applications. Chem. Soc. Rev., 2012, 41(10), 3742-3752. [http://dx.doi.org/10.1039/c2cs15273h]. [PMID: 22362384].
[126]
Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel), 2010, 3(3), 1863-1887. [http://dx.doi.org/10.3390/ma3031863].
[127]
Ohuchi, E.; Imai, K.; Fujii, Y.; Sato, H.; Seiki, M.; Okada, Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem., 1997, 272(4), 2446-2451. [http://dx.doi.org/10.1074/jbc.272.4.2446]. [PMID: 8999957].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy