Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Structural and Biological Overview of Boron-containing Amino Acids in the Medicinal Chemistry Field

Author(s): Antonio Abad García, Alexey Rayevsky, E. Andrade-Jorge* and José G. Trujillo-Ferrara*

Volume 26, Issue 26, 2019

Page: [5077 - 5089] Pages: 13

DOI: 10.2174/0929867325666180926150403

Price: $65

Abstract

Background: Amino acids are the basic structural units of proteins as well as the precursors of many compounds with biological activity. The addition of boron reportedly induces changes in the chemical-biological profile of amino acids.

Methods: We compiled information on the biological effect of some compounds and discussed the structure-activity relationship of the addition of boron. The specific focus presently is on borinic derivatives of α-amino acids, the specific changes in biological activity caused by the addition of a boron-containing moiety, and the identification of some attractive compounds for testing as potential new drugs.

Results: Borinic derivatives of α-amino acids have been widely synthesized and tested as potential new therapeutic tools. The B-N (1.65 A°) or B-C (1.61 A°) or B-O (1.50 A°) bond is often key for the stability at different pHs and temperatures and activity of these compounds. The chemical features of synthesized derivatives, such as the specific moieties and the logP, polarizability and position of the boron atom are clearly linked to their pharmacodynamic and pharmacokinetic profiles. Some mechanisms of action have been suggested or demonstrated, while those responsible for other effects remain unknown.

Conclusion: The increasing number of synthetic borinic derivatives of α-amino acids as well as the recently reported crystal structures are providing new insights into the stability of these compounds at different pHs and temperatures, their interactions on drug targets, and the ring formation of five-membered heterocycles. Further research is required to clarify the ways to achieve specific synthesis, the mechanisms involved in the observed biological effect, and the toxicological profile of this type of boron-containing compounds (BCCs).

Keywords: Boron, amino acids, structure-activity relationship, partition coefficient, drug design, synthetic borinic derivatives.

« Previous
[1]
Diaz, D.B.; Scully, C.C.G.; Liew, S.K.; Adachi, S.; Trinchera, P.; St Denis, J.D.; Yudin, A.K. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew. Chem. Int. Ed. Engl., 2016, 55(41), 12659-12663.
[http://dx.doi.org/10.1002/anie.201605754] [PMID: 27584917]
[2]
Chandra, S.; Barth, R.F.; Haider, S.A.; Yang, W.; Huo, T.; Shaikh, A.L.; Kabalka, G.W. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS One, 2013, 8(9)e75377
[http://dx.doi.org/10.1371/journal.pone.0075377] [PMID: 24058680]
[3]
Spielvogel, B.F. Ahmed, F. U.; Silvey, G. L.; Wisian-neilson, P.; Mcphail. A. T. Of of Ester., 1984, 7, 4322-4324.
[4]
Konieczka, S.Z.; Drisch, M.; Edkins, K.; Hailmann, M.; Finze, M. Polyfluorinated carba-closo-dodecaboranes with amino and ammonio substituents bonded to boron. Dalton Trans., 2015, 44(45), 19576-19586.
[http://dx.doi.org/10.1039/C5DT02055G] [PMID: 26172122]
[5]
Bischoff, R.; Schlüter, H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J. Proteomics, 2012, 75(8), 2275-2296.
[http://dx.doi.org/10.1016/j.jprot.2012.01.041] [PMID: 22387128]
[6]
Soriano-Ursúa, M.A.; Das, B.C.; Trujillo-Ferrara, J.G. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin. Ther. Pat., 2014, 24(5), 485-500.
[http://dx.doi.org/10.1517/13543776.2014.881472] [PMID: 24456081]
[7]
Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice. Toxicol. Appl. Pharmacol., 2016, 307, 130-137.
[http://dx.doi.org/10.1016/j.taap.2016.08.002] [PMID: 27495897]
[8]
Yang, W.; Barth, R.F.; Huo, T.; Kabalka, G.W.; Shaikh, A.L.; Haider, S.A.; Chandra, S. Effects of l-DOPA pre-loading on the uptake of boronophenylalanine using the F98 glioma and B16 melanoma models. Appl. Radiat. Isot., 2014, 88, 69-73.
[http://dx.doi.org/10.1016/j.apradiso.2014.01.002] [PMID: 24485949]
[9]
Coulson, C.A.; Dingle, T.W. The B-O Bond Lengths in Boron-oxygen Compounds. Acta Crystallogr. B, 1968, 24(1), 153-155.
[http://dx.doi.org/10.1107/S0567740868001846]
[10]
Dou, C.; Saito, S.; Yamaguchi, S. A pentacoordinate boron-containing π-electron system with Cl-B-Cl three-center four-electron bonds. J. Am. Chem. Soc., 2013, 135(25), 9346-9349.
[http://dx.doi.org/10.1021/ja404724f] [PMID: 23750650]
[11]
Boranes, A. Boron - nitrogen compounds, organic. Kirk-Othmer Encycl. Chem. Technol., 1984, 1948(1), 1-20.
[12]
Hnyk, D.; Wann, D.A. Molecular Structures of Free Boron Clusters.Boron; Springer International Publishing: Cham, 2015, pp. 17-48.
[http://dx.doi.org/10.1007/978-3-319-22282-0_2]
[13]
Niedenzu, K.; Dawson, J.W. Boron-Nitrogen Compounds. III. 1,2 Aminoboranes, Part 2: The B-N Bond Character in Substituted Aminoboranes. J. Am. Chem. Soc., 1960, 82(16), 4223-4228.
[http://dx.doi.org/10.1021/ja01501a028]
[14]
Monti Hughes, A.; Longhino, J.; Boggio, E.; Medina, V.A.; Martinel Lamas, D.J.; Garabalino, M.A.; Heber, E.M.; Pozzi, E.C.C.; Itoiz, M.E.; Aromando, R.F.; Nigg, D.W.; Trivillin, V.A.; Schwint, A.E. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new “B2” configuration of the RA-6 nuclear reactor. Radiat. Environ. Biophys., 2017, 56(4), 377-387.
[http://dx.doi.org/10.1007/s00411-017-0710-9] [PMID: 28871389]
[15]
García-Ávila, A.K.; Farfán-García, E.D.; Guevara-Salazar, J.A.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Scope of Translational Medicine in Developing Boron-Containing Compounds for Therapeutics. World J. Transl. Med., 2017, 6(1), 1.
[http://dx.doi.org/10.5528/wjtm.v6.i1.1]
[16]
Sakurai, Y.; Uchida, R. [Application of Gel Detector in Boron Neutron Capture Therapy]. Igaku Butsuri, 2017, 37(3), 190-194. [Application of Gel Detector in Bo-ron Neutron Capture Therapy]. [Application of Gel Detector in Boron Neutron Capture Therapy].
[PMID: 29415963]
[17]
Soriano-Ursúa, M.A.; McNaught-Flores, D.A.; Nieto-Alamilla, G.; Segura-Cabrera, A.; Correa-Basurto, J.; Arias-Montaño, J.A.; Trujillo-Ferrara, J.G. Cell-based and in-silico studies on the high intrinsic activity of two boron-containing salbutamol derivatives at the human β2-adrenoceptor. Bioorg. Med. Chem., 2012, 20(2), 933-941.
[http://dx.doi.org/10.1016/j.bmc.2011.11.054] [PMID: 22182578]
[18]
Bowers, G.D.; Tenero, D.; Patel, P.; Huynh, P.; Sigafoos, J.; O’Mara, K.; Young, G.C.; Dumont, E.; Cunningham, E.; Kurtinecz, M.; Stump, P.; Conde, J.J.; Chism, J.P.; Reese, M.J.; Yueh, Y.L.; Tomayko, J.F. Disposition and metabolism of GSK2251052 in humans: a novel boron-containing antibiotic. Drug Metab. Dispos., 2013, 41(5), 1070-1081.
[http://dx.doi.org/10.1124/dmd.112.050153] [PMID: 23439661]
[19]
Pizzorno, L. Nothing Boring About Boron. Integr. Med. (Encinitas), 2015, 14(4), 35-48.
[PMID: 26770156]
[20]
Roda, E.; Nion, S.; Bernocchi, G.; Coccini, T. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-10Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model. Brain Res., 2014, 1583(1), 34-44.
[http://dx.doi.org/10.1016/j.brainres.2014.08.015] [PMID: 25128598]
[21]
Bard, M.; Woods, R.A.; Bartón, D.H.R.; Corrie, J.E.T.; Widdowson, D.A. Sterol mutants of Saccharomyces cerevisiae: chromatographic analyses. Lipids, 1977, 12(8), 645-654.
[http://dx.doi.org/10.1007/BF02533759] [PMID: 331007]
[22]
Del Rosso, J.Q.; Plattner, J.J. From the Test Tube to the Treatment Room: Fundamentals of Boron-containing Compounds and their Relevance to Dermatology. J. Clin. Aesthet. Dermatol., 2014, 7(2), 13-21.
[PMID: 24578778]
[23]
Hébert, M. J. G.; Flewelling, A. J.; Clark, T. N.; Levesque, N. a.; Jean-François, J.; Surette, M. E.; Gray, C. a.; Vogels, C. M.; Touaibia, M.; Westcott, S. a. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester. Int. J. Med. Chem, 2015. 1-9. (Figure 2)
[http://dx.doi.org/10.1155/2015/418362]
[24]
Feng, S.; Zhang, H.; Zhi, C.; Gao, X.D.; Nakanishi, H. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int. J. Nanomedicine, 2018, 13, 641-652.
[http://dx.doi.org/10.2147/IJN.S153476] [PMID: 29440891]
[25]
Zhang, W.; Brombosz, S.M.; Mendoza, J.L.; Moore, J.S.A. A high-yield, one-step synthesis of o-phenylene ethynylene cyclic trimer via precipitation-driven alkyne metathesis. J. Org. Chem., 2005, 70(24), 10198-10201.
[http://dx.doi.org/10.1021/jo0517803] [PMID: 16292873]
[26]
Buesking, A.W.; Bacauanu, V.; Cai, I.; Ellman, J.A. Asymmetric synthesis of protected α-amino boronic acid derivatives with an air- and moisture-stable Cu(II) catalyst. J. Org. Chem., 2014, 79(8), 3671-3677.
[http://dx.doi.org/10.1021/jo500300t] [PMID: 24684495]
[27]
Chung, S.H.; Lin, T.J.; Hu, Q.Y.; Tsai, C.H.; Pan, P.S. Synthesis of boron-containing primary amines. Molecules, 2013, 18(10), 12346-12367.
[http://dx.doi.org/10.3390/molecules181012346] [PMID: 24108399]
[28]
Katsamakas, S.; Papadopoulos, A.G.; Hadjipavlou-Litina, D. Boronic Acid Group. Boronic Acid Group: A Cumbersome False Negative Case in the Process of Drug Design. Molecules, 2016, 21(9), 1185.
[http://dx.doi.org/10.3390/molecules21091185] [PMID: 27617984]
[29]
Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci., 2015, 106(3), 279-286.
[http://dx.doi.org/10.1111/cas.12602] [PMID: 25580517]
[30]
Andrade-Jorge, E.; Godínez-Victoria, M.; Sánchez-Torres, L.E.; Fabila-Castillo, L.H.; Trujillo-Ferrara, J.G. Aryl Maleimides as Apoptosis Inducers on L5178-Y Murine Leukemia Cells (in silico, in vitro and ex vivo Study). Anticancer. Agents Med. Chem., 2016, 16(12), 1615-1621.
[http://dx.doi.org/10.2174/1871520615666160504094417] [PMID: 27141879]
[31]
Larkin, J.D.; Bhat, K.L.; Markham, G.D.; James, T.D.; Brooks, B.R.; Bock, C.W. A computational characterization of boron-oxygen multiple bonding in HN=CH-CH=CH-NH-BO. J. Phys. Chem. A, 2008, 112(36), 8446-8454.
[http://dx.doi.org/10.1021/jp800125p] [PMID: 18707068]
[32]
Carrasco-Torres, G.; Baltiérrez-Hoyos, R.; Andrade-Jorge, E.; Villa-Treviño, S.; Trujillo-Ferrara, J.G.; Vásquez-Garzón, V.R. Cytotoxicity, Oxidative Stress, Cell Cycle Arrest, and Mitochondrial Apoptosis after Combined Treatment of Hepatocarcinoma Cells with Maleic Anhydride Derivatives and Quercetin. Oxid. Med. Cell. Longev., 2017.20172734976
[http://dx.doi.org/10.1155/2017/2734976] [PMID: 29163752]
[33]
Chen, X.; Dmuchowski, C.M.; Park, C.; Fay, C.C.; Ke, C. Quantitative Characterization of Structural and Mechanical Properties of Boron Nitride Nanotubes in High Temperature Environments. Sci. Rep., 2017, 7(1), 11388.
[http://dx.doi.org/10.1038/s41598-017-11795-9] [PMID: 28900287]
[34]
Yourdkhani, S.; Chojecki, M.; Hapka, M.; Korona, T. Interaction of Boron-Nitrogen Doped Benzene Isomers with Water. J. Phys. Chem. A, 2016, 120(31), 6287-6302.
[http://dx.doi.org/10.1021/acs.jpca.6b05248] [PMID: 27414989]
[35]
Zhong, R-L.; Zhang, J.; Muhammad, S.; Hu, Y-Y.; Xu, H-L.; Su, Z-M. Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e-12c bond and large NLO responses. Chemistry, 2011, 17(42), 11773-11779.
[http://dx.doi.org/10.1002/chem.201101430] [PMID: 21898618]
[36]
Durka, K.; Kamiński, R.; Luliński, S.; Serwatowski, J.; Woźniak, K. On the nature of the B...N interaction and the conformational flexibility of arylboronic azaesters. Phys. Chem. Chem. Phys., 2010, 12(40), 13126-13136.
[http://dx.doi.org/10.1039/c0cp00030b] [PMID: 20830378]
[37]
Li, Y.; Sneddon, L.G. Synthesis, characterization, and computational studies of 6-(RR’N)-nido-5,7-C2B8H11: a polyborane cluster with a cage-boron having an exopolyhedral dative boron-nitrogen double bond. J. Am. Chem. Soc., 2008, 130(34), 11494-11502.
[http://dx.doi.org/10.1021/ja803297b] [PMID: 18680295]
[38]
Bonifazi, D.; Fasano, F.; Lorenzo-Garcia, M.M.; Marinelli, D.; Oubaha, H.; Tasseroul, J. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chem. Commun. (Camb.), 2015, 51(83), 15222-15236.
[http://dx.doi.org/10.1039/C5CC06611E] [PMID: 26411675]
[39]
Farfán-García, E.D.; Castillo-Mendieta, N.T.; Ciprés-Flores, F.J.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett., 2016, 258, 115-125.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.018] [PMID: 27329537]
[40]
Mondol, R.; Otten, E. Reactivity of Two-Electron-Reduced Boron Formazanate Compounds with Electrophiles: Facile N−H/N−C Bond Homolysis Due to the Formation of Stable Ligand Radicals Inorg. Chem. Front; ASAP, 2018.
[41]
Wolfrum, A.K.; Matthey, B.; Michaelis, A.; Herrmann, M. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials. Materials (Basel), 2018, 11(2), 255.
[http://dx.doi.org/10.3390/ma11020255] [PMID: 29414847]
[42]
Müller, M.; Behnle, S.; Maichle-Mössmer, C.; Bettinger, H.F. Boron-nitrogen substituted perylene obtained through photocyclisation. Chem. Commun. (Camb.), 2014, 50(58), 7821-7823.
[http://dx.doi.org/10.1039/C4CC01424C] [PMID: 24905718]
[43]
Chen, X.; Zhao, J.C.; Shore, S.G. The roles of dihydrogen bonds in amine borane chemistry. Acc. Chem. Res., 2013, 46(11), 2666-2675.
[http://dx.doi.org/10.1021/ar400099g] [PMID: 24020948]
[44]
Grunewald, C.; Sauberer, M.; Filip, T.; Wanek, T.; Stanek, J.; Mairinger, S.; Rollet, S.; Kudejova, P.; Langer, O.; Schütz, C.; Blaickner, M.; Kuntner, C. On the applicability of [18F]FBPA to predict L-BPA concentration after amino acid preloading in HuH-7 liver tumor model and the implication for liver boron neutron capture therapy. Nucl. Med. Biol., 2017, 44, 83-89.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.012] [PMID: 27837726]
[45]
Sedlak, R.; Fanfrlík, J.; Pecina, A.; Hnyk, D.; Hobza, P.; Lepšík, M. Noncovalent Interactions of Heterobo-ranes.Boron; Springer International Publishing: Cham, 2015, pp. 219-239.
[46]
Bai, Z.; Zhang, L.; Liu, L. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale, 2016, 8(16), 8761-8772.
[http://dx.doi.org/10.1039/C6NR00983B] [PMID: 27065115]
[47]
Umeyama, H.; Morokuma, K. Molecular Orbital Studies of Electron Donor-Acceptor Complexes. 3. Energy and Charge Decomposition Analyses for Several Strong Complexes: Carbon Monoxide-Borane, Ammonia-Borane, Methylamine-Borane, Trimethylamine-Borane, and Ammonia-Boron Tri-fluoride. J. Am. Chem., 1976, 98(23), 7208-7220.
[http://dx.doi.org/10.1021/ja00439a018]
[48]
Vedejs, E.; Fields, S.C.; Lin, S.; Schrimpf, M.R. Asymmet-ric Transformation in Boron Ate Complexes of Amino Ac-ids. J. Org. Chem., 1995, 60(10), 3028-3034.
[http://dx.doi.org/10.1021/jo00115a017]
[49]
Kulvik, M.; Kallio, M.; Laakso, J.; Vähätalo, J.; Hermans, R.; Järviluoma, E.; Paetau, A.; Rasilainen, M.; Ruokonen, I.; Seppälä, M.; Jääskeläinen, J. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy. Appl. Radiat. Isot., 2015, 106, 207-212.
[http://dx.doi.org/10.1016/j.apradiso.2015.08.006] [PMID: 26298436]
[50]
Gon, M.; Tanaka, K.; Chujo, Y. A Highly Efficient Near-Infrared-Emissive Copolymer with a N=N Double-Bond π-Conjugated System Based on a Fused Azobenzene-Boron Complex. Angew. Chem. Int. Ed. Engl., 2018, 57(22), 6546-6551.
[http://dx.doi.org/10.1002/anie.201803013] [PMID: 29624869]
[51]
Walker, W.H., IV; Rokita, S.E. Use of a boroxazolidone complex of 3-iodo-L-tyrosine for palladium-catalyzed cross-coupling. J. Org. Chem., 2003, 68(4), 1563-1566.
[http://dx.doi.org/10.1021/jo0207022] [PMID: 12585904]
[52]
Company, E.P. Elsevier Publishing Company, Amsterdam. Printed in the Netherlands. J. Electron Spectrosc., 1968, 1972(11), 459-474.
[53]
Sgrignani, J.; Novati, B.; Colombo, G.; Grazioso, G. Covalent docking of selected boron-based serine beta-lactamase inhibitors. J. Comput. Aided Mol. Des., 2015, 29(5), 441-450.
[http://dx.doi.org/10.1007/s10822-015-9834-7] [PMID: 25676821]
[54]
Anonymous, Theories of Chemical Bonding, 2011. pp. 1- 24.
[55]
Li, G.; Chen, Y.; Qiao, Y.; Lu, Y.; Zhou, G. Charge Transfer Switching in Donor-Acceptor Systems Based on BN-Fused Naphthalimides. J. Org. Chem, 2018. acs.joc.8b00597
[56]
Lu, J.-B.; Ma, X.-L.; Wang, J.-Q.; Liu, J.-C.; Xiao, H.; Li, J. Efficient Nitrogen Fixation via a Redox-Flexible Single- Iron Site with Reverse-Dative Iron → Boron σ Bonding J. Phys. Chem. A, 2018. 122(18) 4530-4537 acs.jpca.8b02089.
[57]
Issaian, A.; Tu, K.N.; Blum, S.A. Boron-Heteroatom Addition Reactions via Borylative Heterocyclization: Oxyboration, Aminoboration, and Thioboration. Acc. Chem. Res., 2017, 50(10), 2598-2609.
[http://dx.doi.org/10.1021/acs.accounts.7b00365] [PMID: 28933550]
[58]
Snyder, J.A.; Grüninger, P.; Bettinger, H.F.; Bragg, A.E. Excited-State Deactivation Pathways and the Photocyclization of BN-Doped Polyaromatics. J. Phys. Chem. A, 2017, 121(27), 5136-5146.
[http://dx.doi.org/10.1021/acs.jpca.7b04878] [PMID: 28625051]
[59]
Pyne, G.S.; Tang, M. The Boronic Acid Mannich Reac-tion.Organic Reactions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013, Vol. 83, pp. 211-498.
[60]
El Dine, T.M.; Rouden, J.; Blanchet, J. Borinic acid catalysed peptide synthesis. Chem. Commun. (Camb.), 2015, 51(89), 16084-16087.
[http://dx.doi.org/10.1039/C5CC06177F] [PMID: 26390250]
[61]
Detta, A.; Cruickshank, G.S. L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res., 2009, 69(5), 2126-2132.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2345] [PMID: 19244126]
[62]
Khaliq, H.; Juming, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res., 2018, 186(1), 31-51.
[http://dx.doi.org/10.1007/s12011-018-1284-3] [PMID: 29546541]
[63]
Costa, P.V.F.D.; Silva, R.M.P.D.; Suffredini, H.B.; Alves, W.A. Poly-L-Arginine-Modified Boron-Doped Diamond and Glassy Carbon Electrodes for Terbutaline Sulfate Detection. J. Nanosci. Nanotechnol., 2018, 18(7), 4551-4558.
[http://dx.doi.org/10.1166/jnn.2018.15309] [PMID: 29442631]
[64]
Gu, H.; Chio, T.I.; Lei, Z.; Staples, R.J.; Hirschi, J.S.; Bane, S. Formation of hydrazones and stabilized boron-nitrogen heterocycles in aqueous solution from carbohydrazides and ortho-formylphenylboronic acids. Org. Biomol. Chem., 2017, 15(36), 7543-7548.
[http://dx.doi.org/10.1039/C7OB01708A] [PMID: 28853481]
[65]
Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev., 2003, 23(3), 346-368.
[http://dx.doi.org/10.1002/med.10043] [PMID: 12647314]
[66]
Oliva, J.M.; Francés-Monerris, A.; Roca-Sanjuán, D. Quan-tum Chemistry of Excited States in Polyhedral Bo-ranes.Boron; Springer International Publishing: Cham, 2015, pp. 97-119.
[67]
Das, B.C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S.K.; Van Veldhuizen, P.; Verma, A.; Weiss, L.M.; Evans, T. Boron chemicals in diagnosis and therapeutics. Future Med. Chem., 2013, 5(6), 653-676.
[http://dx.doi.org/10.4155/fmc.13.38] [PMID: 23617429]
[68]
Vyakaranam, K.; Rana, G.; Hosmane, N.S.; Spielvogel, B.F. New boron analogues of pyrophosphates and deoxynucleoside boranophosphates. Met. Based Drugs, 2001, 8(3), 145-148.
[http://dx.doi.org/10.1155/MBD.2001.145] [PMID: 18475988]
[69]
Hawkins, P.M.; Jelliss, P.A.; Nonaka, N.; Shi, X.; Banks, W.A. Permeability of the blood-brain barrier to a rhenacarborane. J. Pharmacol. Exp. Ther., 2009, 329(2), 608-614.
[http://dx.doi.org/10.1124/jpet.108.146878] [PMID: 19179541]
[70]
Moisenovich, M. M.; Agapov, I. I.; Antonenko, Y. N. Boronated Derivatives of Chlorin e 6 and Fluoride Contain-ing Porphyrins as Penetrating Anions : A Study Using Bi-layer Lipid Membranes, 2012. 77, pp. (9)975-982.
[71]
Dine, T.M.; Evans, D.; Rouden, J.; Blanchet, J. Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions. Chemistry, 2016, 22(17), 5894-5898.
[http://dx.doi.org/10.1002/chem.201600234] [PMID: 26946179]
[72]
Brustad, E.; Bushey, M.L.; Lee, J.W.; Groff, D.; Liu, W.; Schultz, P.G. A genetically encoded boronate-containing amino acid. Angew. Chem. Int. Ed. Engl., 2008, 47(43), 8220-8223.
[http://dx.doi.org/10.1002/anie.200803240] [PMID: 18816552]
[73]
Farfa, E.D.; Soriano-ursu, M.A.; Querejeta, E. NeuroToxi-cology Boron-Containing Acids. Preliminary Evaluation of Acute Toxicity and Access to the Brain Determined by Ra-man Scattering Spectroscopy., 2014, 40, 8-15.
[74]
Ozaki, S.; Suzuki, A.Z.; Bauer, P.O.; Ebisui, E.; Mikoshiba, K. 2-Aminoethyl diphenylborinate (2-APB) analogues: regulation of Ca2+ signaling. Biochem. Biophys. Res. Commun., 2013, 441(2), 286-290.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.102] [PMID: 24036266]
[75]
Soriano-Ursúa, M.A.; Arias-Montaño, J.A.; Correa-Basurto, J.; Hernández-Martínez, C.F.; López-Cabrera, Y.; Castillo-Hernández, M.C.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G. Insights on the role of boron containing moieties in the design of new potent and efficient agonists targeting the β2 adrenoceptor. Bioorg. Med. Chem. Lett., 2015, 25(4), 820-825.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.077] [PMID: 25592716]
[76]
Yoshimoto, M.; Kurihara, H.; Honda, N.; Kawai, K.; Ohe, K.; Fujii, H.; Itami, J.; Arai, Y. Predominant contribution of L-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl. Med. Biol., 2013, 40(5), 625-629.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.02.010] [PMID: 23557719]
[77]
Shu, D.Y.; Geng, C.R.; Tang, X.B.; Gong, C.H.; Shao, W.C.; Ai, Y. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study. Appl. Radiat. Isot., 2018, 137, 219-224.
[http://dx.doi.org/10.1016/j.apradiso.2018.04.012] [PMID: 29655128]
[78]
Maitz, C.A.; Brockman, J.D.; Yang, M.; Zhang, S.; Stannard, J.; Volgas, D.; Gahl, J.M. Demonstration of the bactericidal effects of the boron neutron capture reaction. Appl. Radiat. Isot., 2018, 137, 190-193.
[http://dx.doi.org/10.1016/j.apradiso.2018.04.011] [PMID: 29655123]
[79]
Wada, Y.; Hirose, K.; Harada, T.; Sato, M.; Watanabe, T.; Anbai, A.; Hashimoto, M.; Takai, Y. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy. J. Radiat. Res. (Tokyo), 2018, 59(2), 122-128.
[http://dx.doi.org/10.1093/jrr/rrx080] [PMID: 29315429]
[80]
Omori, M.; Fujiwara, S.; Shimizu, H.; Ikeda, T.; Bito, T.; Suzuki, M.; Masunaga, S.I.; Ono, K.; Nishigori, C. Boron neutron capture therapy using reactor epithermal neutron beams could effectively control in-transit and lymph node metastases originating from a cutaneous malignant melanoma. J. Dermatol., 2018, 45(4), e90-e91.
[http://dx.doi.org/10.1111/1346-8138.14134] [PMID: 29194755]
[81]
Nakamura, S.; Imamichi, S.; Masumoto, K.; Ito, M.; Wakita, A.; Okamoto, H.; Nishioka, S.; Iijima, K.; Kobayashi, K.; Abe, Y.; Igaki, H.; Kurita, K.; Nishio, T.; Masutani, M.; Itami, J. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(10), 821-831.
[http://dx.doi.org/10.2183/pjab.93.051] [PMID: 29225308]
[82]
Watanabe, Y.; Kurihara, H.; Itami, J.; Sasaki, R.; Arai, Y.; Sugimura, K. Relationship between the uptake of 18F-borono-L-phenylalanine and L-[methyl-11C] methionine in head and neck tumors and normal organs. Radiat. Oncol., 2017, 12(1), 1-7.
[http://dx.doi.org/10.1186/s13014-017-0763-6] [PMID: 28049492]
[83]
González, A.G.; Zavala, L.C.; Moreno, A.P.; San Juan, E.R.; Ferrara, J.G.; Espinosa, L.R.; Marcelín Jiménez, G. Pharmacokinetics of diphenylboroxazolidones of L-α-amino acids with activity on the CNS: quantification in rat DBS by UPLC-MS/MS. Bioanalysis, 2011, 3(4), 439-448.
[http://dx.doi.org/10.4155/bio.10.208] [PMID: 21338263]
[84]
Barth, R.F.; Kabalka, G.W.; Yang, W.; Huo, T.; Nakkula, R.J.; Shaikh, A.L.; Haider, S.A.; Chandra, S. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Appl. Radiat. Isot., 2014, 88, 38-42.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.133] [PMID: 24393770]
[85]
Nakamura, H. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5(6), 715-730.
[http://dx.doi.org/10.4155/fmc.13.48] [PMID: 23617433]
[86]
Van Zandt, M.C.; Whitehouse, D.L.; Golebiowski, A.; Ji, M.K.; Zhang, M.; Beckett, R.P.; Jagdmann, G.E.; Ryder, T.R.; Sheeler, R.; Andreoli, M. Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J. Med. Chem., 2013, 56(6), 2568-2580.
[87]
Zavala, L.C.; Moreno, A.P.A.; Espinosa, L.R. Boron Bridging of Rhamnogalacturonan-II Is Promoted in Vitro by Cationic Chaperones, Including Polyhistidine and Wall Gly-coproteins New Phytol, 2016, 209(1), 241-251.
[PMID: 26301520]
[88]
Chormova, D.; Fry, S.C. Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins. New Phytol., 2016, 209(1), 241-251.
[http://dx.doi.org/10.1111/nph.13596] [PMID: 26301520]
[89]
Sabatini, M.T.; Karaluka, V.; Lanigan, R.M.; Boulton, L.T.; Badland, M.; Sheppard, T.D. Protecting-Group-Free Amidation of Amino Acids using Lewis Acid Catalysts. Chemistry, 2018, 24(27), 7033-7043.
[http://dx.doi.org/10.1002/chem.201800372] [PMID: 29505683]
[90]
Trujillo, J.; Höpfl, H.; Castillo, D.; Santillan, R.; Farfán, N. X-Ray Crystallographic Study of Boroxazolidones Obtained from L -Ornithine, L-Methionine, Kainic Acid and 2, 6-Pyridinedicarboxylic Acid. J. Organomet. Chem., 1998, 571(1), 21-29.
[http://dx.doi.org/10.1016/S0022-328X(98)00893-6]
[91]
Duydu, Y.; Başaran, N.; Üstündağ, A.; Aydin, S.; Ündeğer, Ü.; Ataman, O.Y.; Aydos, K.; Düker, Y.; Ickstadt, K.; Waltrup, B.S.; Golka, K.; Bolt, H.M. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey. Arch. Toxicol., 2011, 85(6), 589-600.
[http://dx.doi.org/10.1007/s00204-011-0692-3] [PMID: 21424392]
[92]
Bhupathiraju, N.V.S.D.K.; Hu, X.; Zhou, Z.; Fronczek, F.R.; Couraud, P.O.; Romero, I.A.; Weksler, B.; Vicente, M.G.H. Synthesis and in vitro evaluation of BBB permeability, tumor cell uptake, and cytotoxicity of a series of carboranylporphyrin conjugates. J. Med. Chem., 2014, 57(15), 6718-6728.
[http://dx.doi.org/10.1021/jm500786c] [PMID: 25029034]
[93]
Flückiger, R.; Henson, E.; Hess, G.M.; Gallop, P.M. Mass spectral and HPLC analysis of biological compounds with diphenylborinic acid. Biomed. Mass Spectrom., 1984, 11(12), 611-615.
[http://dx.doi.org/10.1002/bms.1200111204] [PMID: 6549381]
[94]
Fort, D.J.; Fort, T.D.; Mathis, M.B.; Ball, R.W. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active. Toxicol. Sci., 2016, 154(1), 16-26.
[http://dx.doi.org/10.1093/toxsci/kfw138] [PMID: 27466210]
[95]
Naghii, M.R.; Mofid, M.; Asgari, A.R.; Hedayati, M.; Daneshpour, M.S. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol., 2011, 25(1), 54-58.
[http://dx.doi.org/10.1016/j.jtemb.2010.10.001] [PMID: 21129941]
[96]
Duydu, Y.; Başaran, N.; Ustündağ, A.; Aydın, S.; Undeğer, U.; Ataman, O.Y.; Aydos, K.; Düker, Y.; Ickstadt, K.; Waltrup, B.S.; Golka, K.; Bolt, H.M. Is Boric Acid Toxic to Reproduction in Humans? Assessment of the Animal Reproductive Toxicity Data and Epidemiological Study Results. Curr. Drug Deliv., 2016, 13(3), 324-329.
[http://dx.doi.org/10.2174/1567201812666151029101514] [PMID: 26511087]
[97]
Achilli, C.; Jadhav, S.A.; Guidetti, G.F.; Ciana, A.; Abbonante, V.; Malara, A.; Fagnoni, M.; Torti, M.; Balduini, A.; Balduini, C.; Minetti, G. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem. Biol. Drug Des., 2014, 83(5), 532-540.
[http://dx.doi.org/10.1111/cbdd.12264] [PMID: 24666508]
[98]
Watabe, T.; Hanaoka, K.; Naka, S.; Kanai, Y.; Ikeda, H.; Aoki, M.; Shimosegawa, E.; Kirihata, M.; Hatazawa, J. Practical calculation method to estimate the absolute boron concentration in tissues using 18F-FBPA PET. Ann. Nucl. Med., 2017, 31(6), 481-485.
[http://dx.doi.org/10.1007/s12149-017-1172-5] [PMID: 28439784]
[99]
Sato, E.; Yamamoto, T.; Shikano, N.; Ogura, M.; Nakai, K.; Yoshida, F.; Uemae, Y.; Takada, T.; Isobe, T.; Matsumura, A. Intracellular boron accumulation in CHO-K1 cells using amino acid transport control. Appl. Radiat. Isot., 2014, 88, 99-103.
[http://dx.doi.org/10.1016/j.apradiso.2013.12.015] [PMID: 24388319]
[100]
Rosales-Hernández, M.C.; Correa-Basurto, J. The importance of employing computational resources for the automation of drug discovery. Expert Opin. Drug Discov., 2015, 10(3), 213-219.
[http://dx.doi.org/10.1517/17460441.2015.1005071] [PMID: 25682781]
[101]
Yoshida, F.; Yamamoto, T.; Nakai, K.; Zaboronok, A.; Matsumura, A. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source. Appl. Radiat. Isot., 2015, 106, 247-250.
[http://dx.doi.org/10.1016/j.apradiso.2015.07.030] [PMID: 26242560]
[102]
Kabalka, G.W.; Yao, M.L. The synthesis and use of boronated amino acids for boron neutron capture therapy. Anticancer. Agents Med. Chem., 2006, 6(2), 111-125.
[http://dx.doi.org/10.2174/187152006776119144] [PMID: 16529535]
[103]
Pruitt, D.G.; Baumann, S.M.; Place, G.J.; Oyeamalu, A.N.; Sinn, E.; Jelliss, P.A. Synthesis and functionalization of ni-trosyl rhenacarboranes towards their use as drug delivery ve-hicles. J. Organomet. Chem., 2015, 798, 60-69.
[http://dx.doi.org/10.1016/j.jorganchem.2015.08.006]
[104]
Bandyopadhyay, A.; Cambray, S.; Gao, J. Fast Diazaborine Formation of Semicarbazide Enables Facile Labeling of Bacterial Pathogens. J. Am. Chem. Soc., 2017, 139(2), 871-878.
[http://dx.doi.org/10.1021/jacs.6b11115] [PMID: 27992180]
[105]
Wynn, J.E.; Zhang, W.; Falkinham, J.O., III; Santos, W.L. Branched Peptides: Acridine and Boronic Acid Derivatives as Antimicrobial Agents. ACS Med. Chem. Lett., 2017, 8(8), 820-823.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00119] [PMID: 28835795]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy