[1]
Born, S.L.; Api, A.M.; Ford, R.A.; Lefever, F.R.; Hawkins, D.R. Comparative metabolism and kinetics of coumarin in mice and rats. Food Chem. Toxicol., 2003, 41, 247-258.
[2]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 1-14.
[3]
Axel, R. Scents and sensibility: A molecular logic of olfactory perception (Nobel lecture). Angew. Chem. Int. Ed., 2005, 44, 6110-6127.
[4]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Syn. Comm., 2014, 44, 2756-2788.
[5]
Ali, Z.; Khalid, M.; Gilani, S.; Hussain, H.; Rehman, H. Hussain Imdad; Sadiqa, A. Synthesis and antibacterial activity of coumarin and its derivatives. Asian J. Chem., 2015, 27, 3321-3324.
[6]
Crawford, M.; Shaw, J.A.M. The course of the Perkin coumarin synthesis. Part I. J. Chem. Soc., 1953, 3435-3439.
[7]
Chandrasekhar, S.; Kumar, H.V. An expeditious coumarin synthesis via a “Pseudocycloaddition” between salicylaldehydes and ketene. Syn. Comm., 2015, 45, 232-235.
[8]
Aoki, S.; Amamoto, C.; Oyamada, J.; Kitamura, T. A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives. Tetrahedron, 2005, 61, 9291-9297.
[9]
Sharma, G.V.M.; Janardhan Reddy, J.; Sree Lakshmi, P.; Radha Krishna, P. An efficient ZrCl4 catalyzed one-pot solvent free protocol for the synthesis of 4-substituted coumarins. Tetrahedron Lett., 2005, 46, 6119-6121.
[10]
Oyamada, J.; Kitamura, T. Synthesis of coumarins by Pt-catalyzed hydroarylation of propiolic acids with phenols. Tetrahedron, 2006, 62, 6918-6925.
[11]
Hussien, F.A.H.; Keshe, M.; Alzobar, K.; Merza, J.; Karam, A. Synthesis and nitration of 7-hydroxy-4-methyl coumarin via pechmann condensation using eco-friendly medias. Int. Lett. Chem. Phys. Astron., 2016, 69, 66-73.
[12]
Joshi, R.; Chudasama, U. Synthesis of coumarins via Pechmann condensation using inorganic ion exchangers as solid acid catalysts. J. Sci. Ind. Res., 2008, 67, 1092-1097.
[13]
Ramani, A.; Chanda, B.; Velu, S.; Sivasanker, S. One-pot synthesis of coumarins. Catalysis by the solid base, calcined Mg-Al hydrotalcite. Green Chem., 1999, 1, 163-165.
[14]
Moss, G.P. Nomenclature of fused and bridged fused ring systems (IUPAC Recommendations 1998). Pure Appl. Chem., 1998, 70, 143-216.
[15]
Belavagi, N.S.; Deshapande, N.; Sunagar, M.G.; Khazi, I.A.M. A practical one-pot synthesis of coumarins in aqueous sodium bicarbonate via intramolecular Wittig reaction at room temperature. RSC Adv, 2014, 4, 39667-39671.
[16]
Shaabani, A.; Ghadari, R.; Rezayan, A.H. Synthesis of functionalized coumarins. Iran J. Chem. Chem. Eng, 2011, 30, 19-22.
[17]
Song, A.; Wang, X.; Lam, K.S. A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett., 2003, 44, 1755-1758.
[18]
Medina, F.G.; Marrero, J.G.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; Teissier García, A.G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat. Prod. Rep., 2015, 32, 1472-1507.
[19]
Trotzki, R.; Hoffmann, M.M.; Ondruschka, B. Studies on the solvent-free and waste-free Knoevenagel condensation. Green Chem., 2008, 1, 767-772.
[20]
Moseley, J.D.; Kappe, C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem., 2011, 13, 794-806.
[21]
Martínez, J.; Sánchez, L.; Pérez, F.J.; Carranza, V.; Delgado, F.; Reyes, L.; Miranda, R. Uncatalysed production of coumarin-3-carboxylic acids: A green approach. J. Chem., 2016, 2016, 1-6.
[22]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57, 4795-4798.
[23]
Chavan, H.; Bandgar, B. Aqueous extract of acacia concinna pods: An efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via knoevenagel condensation. ACS Sustainable. Chem. Eng., 2013, 929-936.
[24]
Brahmachari, G. Room temperature one-pot green synthesis of coumarin-3- carboxylic acids in water: A practical method for the large-scale synthesis. ACS Sustainable . Chem. Eng., 2015, 2350-2358.
[25]
Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori, G. Uncatalysed reactions in water: Part 2. Part 1: ref. 1. Preparation of 3-carboxycoumarins. Green Chem., 2001, 3, 173-174.
[26]
Kumar, D.; Kumar, S.; Makrandi, J.K. Aqueous-mediated green synthesis of 3-carboxyxoumarins using grinding technique. Green Chem. Lett. Rev., 2015, 8, 21-25.
[27]
van Schijndel, J.; Canalle, L.A.; Smid, J.; Meuldijk, J. Conversion of syringaldehyde to sinapinic acid through knoevenagel-doebner condensation. OJPC, 2016, 6, 101-108.
[28]
van Schijndel, J.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem. Lett. Rev., 2017, 10, 404-411.
[29]
Siddiqui, Z.N. Sulfamic acid catalysed synthesis of pyranocoumarins in aqueous media. Tetrahedron Lett., 2014, 55, 163-168.
[30]
Li, J.P.H.; Adesina, A.A.; Kennedy, E.M.; Stockenhuber, M. A mechanistic study of the Knoevenagel condensation reaction: new insights into the influence of acid and base properties of mixed metal oxide catalysts on the catalytic activity. PCCP., 2017, 19, 26630-26644.
[31]
Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41, 1437-1451.
[32]
Pinxterhuis, E.B.; Giannerini, M.; Hornillos, V.; Feringa, B.L. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat. Commun., 2016, 7, 11698.
[33]
Kiyama, R.; Minomura, S. A note on the stability of ammonium bicarbonate tablets. Rev. Phys. Chem. Japan, 1952, 22, 43-45.
[34]
Sheldon, R.A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem., 2017, 19, 18-43.