[1]
R.S. Kamath, A.G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, and M. Sohrmann, "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi", Nature, vol. 421, p. 231, 2003.
[2]
J. Wang, X. Peng, W. Peng, and F.X. Wu, "Dynamic protein interaction network construction and applications", Proteomics, vol. 14, pp. 338-352, 2014.
[3]
J. Wang, M. Li, H. Wang, and Y. Pan, "Identification of essential proteins based on edge clustering coefficient", IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 9, pp. 1070-1080, 2012.
[4]
L.C. Freeman, "A set of measures of centrality based on betweenness", Sociometry, pp. 35-41, 1977.
[5]
M.P. Joy, A. Brock, D.E. Ingber, and S. Huang, "High-betweenness proteins in the yeast protein interaction network", BioMed Res. Int., vol. 2005, pp. 96-103, 2005.
[6]
R.R. Vallabhajosyula, D. Chakravarti, S. Lutfeali, A. Ray, and A. Raval, "Identifying hubs in protein interaction networks", PLoS One, vol. 4, p. 5344, 2009.
[7]
S. Wuchty, and P.F. Stadler, "Centers of complex networks", J. Theor. Biol., vol. 223, pp. 45-53, 2003.
[8]
P. Bonacich, "Power and centrality: A family of measures", Am. J. Sociol., vol. 92, pp. 1170-1182, 1987.
[9]
K. Stephenson, and M. Zelen, "Rethinking centrality: Methods and examples", Soc. Netw., vol. 11, pp. 1-37, 1989.
[10]
E. Estrada, and J.A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Phys. Rev. E, vol. 71, p. 056103, 2005.
[11]
K.S. Shafna, K.C. Binsu, and M.U. Sreeja, "Visualization of symptom based disease prognosis using K-means algorithm", Intl. J. Adv. Studies Comput. Sci. Eng., vol. 7, pp. 30-34, 2018.
[12]
Y. Lu, M. Li, Q. Li, Y. Pan, and J. Wang, "“A new method for predicting
essential proteins based on topology potential”,", IEEE International
Conference on Bioinformatics and Biomedicine,, p. pp. 109-
114, 2013.
[13]
Z. Jiancheng, W. Jianxin, P. Wei, Z. Zhen, and L. Min, "A feature selection method for prediction essential protein", Tsinghua Sci. Technol., vol. 20, pp. 491-499, 2015.
[14]
Y. Qi, and J. Luo, "“Prediction of essential proteins based on local interaction density”, IEEE/ACM", Trans. Comput. Biol. Bioinform., vol. 13, pp. 1170-1182, 2016.
[15]
F. Yetian, T. Xiwei, H. Xiaohua, W. Wei, and P. Qing, "Prediction of essential proteins based on subcellular localization and gene expression correlation", BMC Bioinformatics, vol. 18, p. 470, 2017.
[16]
L. Xiujuan, F. Ming, W. Fang-Xiang, and C. Luonan, "Improved flower pollination algorithm for identifying essential proteins", BMC Syst. Biol., vol. 12, p. 46, 2018.
[17]
Z. Wei, X. Jia, L. Yuanyuan, and Z. Xiufen, "“Detecting essential proteins based on network topology, gene expression data and gene ontology information”, IEEE/ACM", Trans. Comput. Biol. Bioinform., vol. 15, pp. 109-116, 2016.
[18]
L. Christophe, K. Olivier, B. Philippe, and L. Laurent, "Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median", J. Exp. Soc. Psychol., vol. 49, pp. 764-766, 2013.
[19]
"D. Reshef and Y. Reshef, “Gene Expression Data Set”, Available
From:", http://www.exploredata.net/Downloads/Gene-Expression-Data-Set [Accessed: September 4, 2018].
[20]
P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, "Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization", Am. Soc. Cell Biol., vol. 9, pp. 3273-3297, 1998.
[21]
A.G. Holman, P.J. Davis, J.M. Foster, C.K.S. Carlow, and S. Kumar, "Computational prediction of essential genes in anunculturable Endosymbiotic bacterium, Wolbachia of Brugia malayi", BMC Microbiol., vol. 9, p. 243, 2009.