[1]
Ariga, K.; Minami, K.; Ebara, M.; Nakanishi, J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym. J., 2016, 48, 371-389.
[2]
Hamzeh, M.; Sunahara, G.I. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol. In Vitro, 2013, 27, 864-873.
[3]
Mazzola, L. Commercializing nanotechnology. Nat. Biotechnol., 2003, 21, 1137-1143.
[4]
Paull, R.; Wolfe, J.; Hébert, P.; Sinkula, M. Investing in nanotechnology. Nat. Biotechnol., 2003, 21, 1144-1147.
[5]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; Bosi, S. Diverse applications of nanomedicine. ACS Nano, 2017, 11, 2313-2381.
[6]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn., 2017, 90, 967-1004.
[7]
Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P. Bioinspired nanoarchitectonics as emerging drug delivery systems. New J. Chem., 2014, 38, 5149-5163.
[8]
Nakanishi, W.; Minami, K.; Shrestha, L.K.; Ji, Q.; Hill, J.P.; Ariga, K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today, 2014, 9, 378-394.
[9]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[10]
Matsuura, K. Construction of functional biomaterials by biomolecular self-assembly. Bull. Chem. Soc. Jpn., 2017, 90, 873-884.
[11]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
[12]
Pandian, G.N.; Sugiyama, H. Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids. Bull. Chem. Soc. Jpn., 2016, 89, 843-868.
[13]
Robinson, J.R.; Lee, V.H.L. Controlled drug delivery: Fundamentals and applications, 2nd ed; Marcel Dekker: New York, 1987.
[14]
Jantzen, J.M.; Robinson, J.R. Sustained and controlled release drug delivery systems; G.S. Banker.; C.T. Rhodes, 4th ed.; Marcel Dekker: New York, 2002.
[15]
Zeng, R.; Lin, C.; Lin, Z.; Chen, H.; Lu, W.; Lin, C.; Li, H. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res., 2018, 1-16.
[16]
Walker, M.; Metcalf, D.; Parsons, D.; Bowler, P. A real-life clinical evaluation of a next-generation antimicrobial dressing on acute and chronic wounds. J. Wound Care, 2015, 24, 11-22.
[17]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6, 265sr6.
[18]
Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen., 2009, 17, 763-771.
[19]
Sarabahi, S. Recent advances in topical wound care. Indian J. plast. Surg., 2012, 45, 379.
[20]
Lau, P.; Bidin, N.; Islam, S.; Norsyuhada, W.; Shukri, B.W.M.; Zakaria, N. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surg. Med., 2017, 49, 380-386.
[21]
Wilkinson, L.J.; White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care, 2011, 20, 543-549.
[22]
Cortivo, R.; Vindigni, V.; Iacobellis, L.; Abatangelo, G.; Pinton, P.; Zavan, B. Nanoscale particle therapies for wounds and ulcers. Nanomedicine , 2010, 5, 641-656.
[23]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci., 2017, 3, 163-175.
[24]
Lee, H.; Kim, Y.H. Nanobiomaterials for pharmaceutical and medical applications. Arch. Pharm. Res., 2014, 37, 1-3.
[25]
Sandhiya, S.; Dkhar, S.A.; Surendiran, A. Emerging trends of nanomedicine-an overview. Fundam. Clin. Pharmacol., 2009, 23, 263-269.
[26]
Suri, S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2, 16.
[27]
Tran, Q.H.; Nguyen, V.Q. A.T., Le. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol, 2013, 4, 1-20.
[28]
Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26, 131-138.
[29]
Edwards-Jones, V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol., 2009, 49, 147-152.
[30]
Stadelmann, W.K.; Digenis, A.G.; Tobin, G.R. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg., 1998, 176, 26S-38S.
[31]
Steed, D.L. The role of growth factors in wound healing. Surg. Clin. North Am., 1997, 77, 575-586.
[32]
Tocco, I.; Zavan, B.; Bassetto, F.; Vindigni, V. Nanotechnology-based therapies for skin wound regeneration. J. Nanomater., 2012, 2012, 4.
[33]
Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface, 2009, 6, 1-10.
[34]
Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in Wound Repair: Molecular and Cellular Mechanisms. J. Invest. Dermatol., 2007, 127, 514-525.
[35]
Holland, T.A.; Tessmar, J.K.V.; Tabata, Y.; Mikos, A.G. Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release, 2004, 94, 101-114.
[36]
Kawai, K.; Suzuki, S.; Tabata, Y.; Nishimura, Y. Accelerated wound healing through the incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis using a pressure-induced decubitus ulcer model in genetically diabetic mice. Br. J. Plast. Surg., 2005, 58, 1115-1123.
[37]
Johnstone, C.C.; Farley, A.; Hendry, C. The physiological basics of wound healing. Nurs. Stand., 2005, 19, 59-65.
[38]
Cooper, D.M. Optimizing wound healing. A practice within nursing’s domain. Nurs. Clin. North Am., 1990, 25, 165-180.
[39]
Hantash, B.M.; Zhao, L.; Knowles, J.A.; Lorenz, H.P. Adult and fetal wound healing. Front. Biosci., 2008, 13, 51-61.
[40]
McPherson, J.M.; Piez, K.A. Collagen in dermal wound repair. In: The molecular and cellular biology of wound repair; Springer US: Boston, MA, 1988; pp. 471-496.
[41]
Baum, C.L.; Arpey, C.J. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg., 2005, 31, 674-686.
[42]
Esser, S.; Wolburg, K.; Wolburg, H.; Breier, G.; Kurzchalia, T.; Risau, W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol., 1998, 140, 947-959.
[43]
Lisa, B.P. Biomaterials: Polymers in controlled drug delivery. November ed.; Med Device Link, CA: Med Plastics Biomater: Los Angeles, 1997.
[44]
Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv., 2015, 12, 1895-1909.
[45]
Singer, A.J.; Dagum, A.B. Current management of acute cutaneous wounds. N. Engl. J. Med., 2008, 359, 1037-1046.
[46]
Seetharam, R.N. Nanomedicine-emerging area of nanobiotechnology research. Curr. Sci., 2006, 91, 260.
[47]
Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm., 2009, 6, 1388-1401.
[48]
Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol., 2009, 236, 310-318.
[49]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol. Biol. Med, 2010, 6, 103-109.
[50]
Kwan, K.H.L.; Liu, X.; To, M.K.T.; Yeung, K.W.K.; Ho, C.; Wong, K.K.Y. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed Nanotechnol. Biol. Med, 2011, 7, 497-504.
[51]
Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2, 129-136.
[52]
Widgerow, A.D. Nanocrystalline silver, gelatinases and the clinical implications. Burns, 2010, 36, 965-974.
[53]
Haag, S.M.; Hauck, E.W.; Eickelberg, O.; Szardening-Kirchner, C.; Diemer, T.; Weidner, W. n.d. Investigation of the antifibrotic effect of IFN-g on fibroblasts in a cell culture model of Peyronie’s disease. Sex. Med. Rev., 2016, 4, 85-94.
[54]
Liu, X.; Lee, P.; Ho, C.; Lui, V.C.H.; Chen, Y.; Che, C.; Tam, P.K.H.; Wong, K.K.Y. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem, 2010, 5, 468-475.
[55]
Cardoso, V.S.; Quelemes, P.V.; Amorin, A.; Primo, F.L.; Gobo, G.G.; Tedesco, A.C.; Mafud, A.C.; Mascarenhas, Y.P.; Corrêa, J.R.; Kuckelhaus, S.A.; Eiras, C.; Leite, J.R.S.; Silva, D. dos Santos Júnior, J.R. Collagen-based silver nanoparticles for biological applications: Synthesis and characterization. J. Nanobiotechnol, 2014, 12, 36.
[57]
Abramyan, A.A.; Afanasyev, M.M.; Beklemyshev, V.I.; Filippov, K.V.; Makhonin, I.I.; Maugeri, U.O.G.; Solodovnikov, V.A. Composition to act in prevention and to take care of diabetic foot. WO 2012038333 A3. 2012.
[58]
White, R. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care, 2011, 20, 543-549.
[59]
Leu, J.G.; Chen, S.A.; Chen, H.M.; Wu, W.M.; Hung, C.F.; Yao, Y.D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed Nanotechnol. Biol. Med., 2012, 8, 767-775.
[60]
Medhe, S.; Bansal, P.; Srivastava, M.M. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl. Nanosci., 2014, 4, 153-161.
[61]
Yakimovich, N.O.; Ezhevskii, A.A.; Guseinov, D.V.; Smirnova, L.A.; Gracheva, T.A.; Klychkov, K.S. Antioxidant properties of gold nanoparticles studied by ESR spectroscopy. Russ. Chem. Bull., 2008, 57, 520-523.
[62]
Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr, 2014, 4, 325-332.
[63]
Chen, S.A.; Chen, H.M.; Yao, Y.D.; Hung, C.F.; Tu, C.S.; Liang, Y.J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci., 2012, 47, 875-883.
[64]
Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl., 2016, 31, 283-301.
[65]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12, 2313-2333.
[66]
Agren, M.S.; Chvapil, M.; Franzén, L. Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J. Surg. Res., 1991, 50, 101-105.
[67]
Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. Int. J. Pharm., 2014, 463, 161-169.
[68]
Kumar, S.P.T.; Lakshmanan, V.K.; Raj, M.; Biswas, R.; Hiroshi, T.; Nair, S.V.; Jayakumar, R. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm. Res., 2013, 30, 523-537.
[69]
Galindo, R.B.; Martínez, J.B.; Manriquez, A.C.; Orta, C.Á.; Urbina, B.P. Zinc oxide nanoparticles control skin infection and improve dermal wound healing in humans. J. Bioremed. Biodeg., 2016, 7.
[70]
Wright, J.A.; Richards, T.; Srai, S.K.S. The role of iron in the skin and cutaneous wound healing. Front. Pharmacol., 2014, 5, 156.
[71]
Anghel, I.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Anghel, A.G.; Chifiriuc, M.C. Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int. J. Mol. Sci., 2013, 14, 18110-18123.
[72]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11, 986-994.
[73]
Grumezescu, A.M.; Holban, A.M.; Andronescu, E.; Mogoşanu, G.D.; Vasile, B.S.; Chifiriuc, M.C.; Lazar, V.; Andrei, E.; Constantinescu, A.; Maniu, H. Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int. J. Pharm., 2014, 463, 146-154.
[74]
Mitra, A.; Cholkar, K.; Mandal, A. Emerging nanotechnologies for diagnostics, drug delivery and medical devices, 1st ed; Amsterdam, Netherlands, 2017.
[75]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16, 23501.
[76]
Feng, B.; Weng, J.; Yang, B.C.; Qu, S.X.; Zhang, X.D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 2003, 24, 4663-4670.
[77]
Nygren, H.; Tengvall, P.; Lundström, I. The initial reactions of TiO2 with blood. J. Biomed. Mater. Res., 1997, 34, 487-492.
[78]
Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials, 2001, 22, 2043-2048.
[79]
Yogi, C.; Kojima, K.; Wada, N.; Tokumoto, H.; Takai, T.; Mizoguchi, T.; Tamiaki, H. Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films, 2008, 516, 5881-5884.
[80]
Sankar, R.; Dhivya, R.; Shivashangari, K.S.; Ravikumar, V. Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats. J. Mater. Sci. Mater. Med., 2014, 25, 1701-1708.
[81]
Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym., 2013, 95, 530-539.
[82]
Pan, Z.; Lee, W.; Slutsky, L.; Clark, R.A.F.; Pernodet, N.; Rafailovich, M.H. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 2009, 5, 511-520.
[83]
Sivaranjani, V.; Philominathan, P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med, 2016, 12, 1-5.
[84]
El-Aassar, M.R. El fawal, G.F.; El-Deeb, N.M.; Hassan, H.S.; Mo, X. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol., 2016, 178, 1488-1502.
[85]
Osumi, K.; Matsuda, S.; Fujimura, N.; Matsubara, K.; Kitago, M.; Itano, O.; Ogino, C.; Shimizu, N.; Obara, H.; Kitagawa, Y. Acceleration of wound healing by ultrasound activation of TiO2 in Escherichia coli -infected wounds in mice. J. Biomed. Mater. Res. Part B Appl. Biomater., 2017, 105, 2344-2351.
[86]
Alarifi, S.; Ali, D.; Al-Doaiss, A.A.; Ali, B.A.; Ahmed, M.; Al-Khedhairy, A.A. Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int. J. Nanomed, 2013, 8, 3937-3943.
[87]
Tucci, P.; Porta, G.; Agostini, M.; Dinsdale, D.; Iavicoli, I.; Cain, K.; Finazzi-Agró, A.; Melino, G.; Willis, A. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis., 2013, 4, e549.
[88]
Bhattacharya, K.; Davoren, M.; Boertz, J.; Schins, R.P.; Hoffmann, E.; Dopp, E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol., 2009, 6, 17.
[89]
Linnainmaa, K.; Kivipensas, P.; Vainio, H. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol. In Vitro, 1997, 11, 329-335.
[90]
Warheit, D.B.; Brown, S.C.; Donner, E.M. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol., 2015, 84, 208-224.
[91]
Wang, Z.; Wang, Z.; Lu, W.W.; Zhen, W.; Yang, D.; Peng, S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater., 2017, 9, e435.
[92]
Lee, J.; Blaber, M. Increased functional half-life of fibroblast growth factor-1 by recovering a vestigial disulfide bond. J. Prot. Proteomics., 2013, 1, 47-53.
[93]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[94]
Corrigan, O.I.; Li, X. Quantifying drug release from PLGA nanoparticulates. Eur. J. Pharm. Sci., 2009, 37, 477-485.
[95]
Knighton, D.R.; Ciresi, K.F.; Fiegel, V.D.; Austin, L.L.; Butler, E.L. Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF). Ann. Surg., 1986, 204, 322-330.
[96]
Peterson, L.R. Bad Bugs, No Drugs: No ESCAPE Revisited. Clin. Infect. Dis., 2009, 49, 992-993.
[97]
DeRosa, F.; Kibbe, M.R.; Najjar, S.F.; Citro, M.L.; Keefer, L.K.; Hrabie, J.A. Nitric oxide-releasing fabrics and other acrylonitrile-based diazeniumdiolates. JACS, 2007, 129, 3786-3787.
[98]
Weller, R.; Price, R.J.; Ormerod, A.D.; Benjamin, N.; Leifert, C. Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol., 2001, 90, 648-652.
[99]
Pelegrino, M.T.; Weller, R.B.; Chen, X.; Bernardes, J.S.; Seabra, A.B. Chitosan nanoparticles for nitric oxide delivery in human skin. Med. Chem. Commun., 2017, 8, 713-719.
[100]
Kim, I.S.; Lee, S.K.; Park, Y.M.; Lee, Y.B.; Shin, S.C.; Lee, K.C.; Oh, I.J. Physicochemical characterization of poly(l-lactic acid) and poly(d,l-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm., 2005, 298, 255-262.
[101]
Chellat, F.; Grandjean-Laquerriere, A.; Naour, R.Le Fernandes, J.; Yahia, L.; Guenounou, M.; Laurent-Maquin, D. Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials, 2005, 26, 961-970.
[102]
Andreadis, S.T. Gene-modified tissue-engineered skin: The next generation of skin substitutes. Adv. Biochem. Eng. Biotechnol., 2007, 103, 241-274.
[103]
Nath, R.K.; Somasundaram, C.; Xiong, W.; Li, J.; Bian, K.; Murad, F. Protective effect of type I collagen antisense oligonucleotides on bleomycin induced pulmonary fibrosis. Open Conf. Proc. J., 2010, 1, 141-149.
[104]
Yang, F.; Cho, S.W.; Son, S.M.; Bogatyrev, S.R.; Singh, D.; Green, J.J.; Mei, Y.; Park, S.; Bhang, S.H.; Kim, B.S.; Langer, R.; Anderson, D.G. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107, 3317-3322.
[105]
Laurila, J.P.; Laatikainen, L.; Castellone, M.D.; Trivedi, P.; Heikkila, J.; Hinkkanen, A.; Hematti, P.; Laukkanen, M.O. Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model. Cytotherapy, 2009, 11, 726-737.
[106]
Galvan, L. Effects of heparin on wound healing. J.wound. Ostomy. Cont. Nurs., 1996, 23, 224-226.
[107]
Tarvady, S.; Anguli, V.C.; Pichappa, C.V. Effect of heparin on wound healing. J. Biosci., 1987, 12, 33-40.
[108]
Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5, 205-218.
[109]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30, 2782-2789.
[110]
Yukuyama, M.; Kato, E.; Löbenberg, R.; Bou-Chacra, N. Challenges and future prospects of nanoemulsion as a drug delivery system. Curr. Pharm. Des., 2016, 22, 1-1.
[111]
Tadros, T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interface Sci., 2004, 108-109, 227-258.
[112]
Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem., 2014, 21, 1044-1049.
[113]
Hemmila, M.R.; Mattar, A.; Taddonio, M.A.; Arbabi, S.; Hamouda, T.; Ward, P.A.; Wang, S.C.; Baker, J.R. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery, 2010, 148, 499-509.
[114]
Guler, E.; Barlas, F.B.; Yavuz, M.; Demir, B.; Gumus, Z.P.; Baspinar, Y.; Coskunol, H.; Timur, S. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. Colloids Surf. B Biointerfaces, 2014, 121, 299-306.
[115]
Turos, E.; Shim, J.Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett., 2007, 17, 53-56.
[116]
Lovelyn, C.; Attama, A.A. Current state of nanoemulsions in drug delivery. J. Biomater. Nanobiotechnol., 2011, 2, 626-639.
[117]
Chen, X.; Peng, L.H.; Shan, Y.H.; Li, N.; Wei, W.; Yu, L.; Li, Q.M.; Liang, W.Q.; Gao, J.Q. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int. J. Pharm., 2013, 447, 171-181.
[118]
Küchler, S.; Wolf, N.B.; Heilmann, S.; Weindl, G.; Helfmann, J.; Yahya, M.M.; Stein, C.; Schäfer-Korting, M. 3D-Wound healing model: Influence of morphine and solid lipid nanoparticles. J. Biotechnol., 2010, 148, 24-30.
[119]
Bigliardi, P.L.; Tobin, D.J.; Gaveriaux-Ruff, C.; Bigliardi-Qi, M. Opioids and the skin-where do we stand? Exp. Dermatol., 2009, 18, 424-430.
[120]
Wolf, S.E.; Sterling, J.P.; Hunt, J.L.; Arnoldo, B.D. The year in burns 2010. Burns, 2011, 37, 1275-1287.
[121]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71, 349-358.
[122]
Gainza, G.; Villullas, S.; Pedraz, J.L.; Hernandez, R.M.; Igartua, M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine , 2015, 11, 1551-1573.
[123]
Chu, Y.; Yu, D.; Wang, P.; Xu, J.; Li, D.; Ding, M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen., 2010, 18, 499-505.
[124]
Hansom, L.R.; William, H.F.; Hoekman, J.D.; Pohl, J. Lipid growth factor formulations. US 20100074959 A1 2010.
[125]
Singh, A.; Garg, G.; Sharma, P.K. Nanospheres: A novel approach for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2010, 5, 84-88.
[126]
Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm., 2001, 218, 75-80.
[127]
Anumolu, S.S.; Menjoge, A.R.; Deshmukh, M.; Gerecke, D.; Stein, S.; Laskin, J.; Sinko, P.J. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials, 2011, 32, 1204-1217.
[128]
Moritz, S.; Wiegand, C.; Wesarg, F.; Hessler, N.; Müller, F.A.; Kralisch, D.; Hipler, U.C.; Fischer, D. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm., 2014, 471, 45-55.
[129]
Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm., 2012, 437, 110-119.
[130]
Zhou, W.; Zhao, M.; Zhao, Y.; Mou, Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: Preparation and in vitro release studies. J. Mater. Sci. Mater. Med., 2011, 22, 1221-1230.
[131]
Friedman, A.J.; Han, G.; Navati, M.S.; Chacko, M.; Gunther, L.; Alfieri, A.; Friedman, J.M. Sustained release nitric oxide releasing nanoparticles: Characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide, 2008, 19, 12-20.
[132]
Hajimiri, M.; Shahverdi, S.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Amini, M.; Dinarvand, R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev. Ind. Pharm., 2016, 42, 707-719.
[133]
Lao, G.; Yan, L.; Yang, C.; Zhang, L.; Zhang, S.; Zhou, Y. Controlled release of epidermal growth factor from hydrogels accelerates wound healing in diabetic rats. J. Am. Podiatr. Med. Assoc., 2012, 102, 89-98.
[134]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24, 539-557.
[135]
Choi, J.S.; Kim, H.S.; Yoo, H.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv. Transl. Res., 2015, 5, 137-145.
[136]
Kim, B.J.; Cheong, H.; Choi, E.S.; Yun, S.H.; Choi, B.H.; Park, K.S.; Kim, I.S.; Park, D.H.; Cha, H.J. Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J. Biomed. Mater. Res. B., 2017, 105, 218-225.
[137]
Waghmare, V.S.; Wadke, P.R.; Dyawanapelly, S.; Deshpande, A.; Jain, R.; Dandekar, P. Starch based nanofibrous scaffolds for wound healing applications. Bioact. Mater., 2018, 3, 255-266.
[138]
Rieger, K.A.; Birch, N.P.; Schiffman, J.D. Designing electrospun nanofiber mats to promote wound healing–A review. J. Mater. Chem., 2013, B1, 4531.
[139]
Zilberman, M.; Golerkansky, E.; Elsner, J.J.; Berdicevsky, I. Gentamicin-eluting bioresorbable composite fibers for wound healing applications. J. Biomed. Mater. Res. Part A, 2009, 89A, 654-666.
[140]
Fu, S.Z.; Meng, X.H.; Fan, J.; Yang, L.L.; Wen, Q.L.; Ye, S.J.; Lin, S.; Wang, B.Q.; Chen, L.L.; Wu, J.B.; Chen, Y.; Fan, J.M.; Li, Z. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J. Biomed. Mater. Res. Part B Appl. Biomater., 2014, 102, 533-542.
[141]
Merrell, J.G.; McLaughlin, S.W.; Tie, L.; Laurencin, C.T.; Chen, A.F.; Nair, L.S. Curcumin-loaded poly(ε-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol., 2009, 36, 1149-1156.
[142]
Schneider, A.; Wang, X.Y.; Kaplan, D.L.; Garlick, J.A.; Egles, C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater., 2009, 5, 2570-2578.
[143]
Huang, M.H.; Yang, M.C. Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Inter. J. Pharm., 2008, 346, 38-46.
[144]
Sell, S.A.; Minden-Birkenmaier, B.A. Saint Louis University, Honey and growth factor eluting scaffold for wound healing and tissue engineering. U.S. Patent Application 14/337,925 2014.
[145]
Alberti, T.; S , Coelho. D.; Voytena, A.; Pitz, H.; de Pra, M.; Mazzarino, L.; Kuhnen, S.; M Ribeiro-do-Valle, R.; Maraschin, M.; Veleirinho, B. Nanotechnology: A Promising Tool Towards Wound Healing. Curr. Pharm. Des., 2017, 23, 3515-3528.
[146]
Baiguera, S.; Urbani, L.; Del Gaudio, C. Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. Biomed Res. Int., 2014, 2014, 398069.
[147]
Hosseinkhani, M.; Mehrabani, D.; Karimfar, M.H.; Bakhtiyari, S.; Manafi, A.; Shirazi, R. Tissue engineered scaffolds in regenerative medicine. World J. Plast. Surg., 2014, 3, 3-7.
[148]
Del Gaudio, C.; Baiguera, S.; Ajalloueian, F.; Bianco, A.; Macchiarini, P. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs? J. Biomed. Mater. Res. Part A, 2014, 102, 2427-2447.
[149]
Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014, 173, 75-88.
[150]
Santos, J.C.C.; Mansur, A.A.P.; Ciminelli, V.S.T.; Mansur, H.S. Nanocomposites of poly(vinyl alcohol)/functionalized-multiwall carbon nanotubes conjugated with glucose oxidase for potential application as scaffolds in skin wound healing. Int. J. Polym. Mater. Polym. Biomater, 2014, 63, 185-196.
[151]
de Faria, A.F.; Martinez, D.S.T.; Meira, S.M.M.; de Moraes, A.C.M.; Brandelli, A.; Filho, A.G.S.; Alves, O.L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces, 2014, 113, 115-124.
[152]
Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym., 2017, 156, 460-469.
[153]
Das, S.; Baker, A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioena. Biotechnol., 2016, 4, 82.
[154]
Shubhika, K. Nanotechnology and medicine–The upside and the downside. Int. J. Drug Dev. Res., 2013, 5, 1-10.
[155]
Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A.A.; Larsson, A. Drug delivery from hydrogels: A general framework for the release modeling. Curr. Drug Deliv., 2017, 14, 179-189.
[156]
156. Kikuchi, I.S.; Cardoso Galante, R.S.; Dua, K.; Malipeddi, V.R.; Awasthi, R.; Ghisleni, D.D.; de Jesus Andreoli Pinto, T. Hydrogel based drug delivery systems: A review with special emphasis on challenges associated with decontamination of hydrogels and biomaterials. Curr. Drug Deliv., 2017, 14, 917-925.
[157]
Subedi, S.K. An introduction to nanotechnology and its implications. Himalayan Physics, 2013, 4, 78-81.