[1]
Dubois C, Lafleur PG, Roy C, Brousseau P, Stowe RA. Polymer-grafted metal nanoparticles for fuel applications. J Propuls Power 2007; 23(4): 651-8.
[2]
Glassman I, Yetter RA. Combustion of nonvolatile fuels.InCombustion. 4th ed. Burlington: Academic Press 2008; pp. 495-550.
[3]
Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst 2009; 32: 1819-38.
[4]
Kim DW, Kim KT, Min TS, Kim KJ, Kim SH. Improved energetic-behaviors of spontaneously surface-mediated Al particles. Sci Rep-UK 2017; 7: 4659.
[5]
Cox JD, Wagman DD, Medvedev VA. In CODATA key values for thermodynamics. New York: Hemisphere Pub. Corp. 1989.
[6]
Berner MK, Zarko VE, Talawar MB. Nanoparticles of energetic materials: Synthesis and properties. Combust Explo Shock 2013; 49(6): 625-47.
[7]
Mench MM, Kuo KK, Yeh CL, Lu YC. Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combust Sci Technol 1998; 135(1-6): 269-92.
[8]
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014; 116: 62-76.
[9]
Chen YN, Egan GC, Wan JY, et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat Commun 2016; 7: 12332.
[10]
Wang J, Qiao ZQ, Yang YT, et al. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chem-Eur J 2016; 22(1): 279-84.
[11]
Tang Y, Kong CD, Zong YC, Li SQ, Zhuo JK, Yao Q. Combustion of aluminum nanoparticle agglomerates: From mild oxidation to microexplosion. P Combust Inst 2017; 36(2): 2325-32.
[12]
Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 2005; 17(11): 2987-96.
[13]
Fernando KAS, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. J Phys Chem C 2009; 113(2): 500-3.
[14]
Fogliazza M, Sicard L, Decorse P, Chevillot-Biraud A, Mangeney C, Pinson J. Powerful surface chemistry approach for the grafting of alkyl multi layers on aluminum nanoparticles. Langmuir 2015; 31(22): 6092-8.
[15]
Foley TJ, Johnson CE, Higa KT. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 2005; 17(16): 4086-91.
[16]
Gray JE, Luan B. Protective coatings on magnesium and its alloys - a critical review. J Alloys Compd 2002; 336(1): 88-113.
[17]
Natarajan S, Sivan V, Tennyson PG, Kiran VR. Protective coatings on magnesium and its alloys: A critical review. Corr Prev Control 2004; 51(4): 142-63.
[18]
Chung SW, Guliants EA, Bunker CE, et al. Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 2009; 25(16): 8883-7.
[19]
Jelliss PA, Buckner SW, Chung SW, Patel A, Guliants EA, Bunker CE. The use of 1,2-epoxyhexane as a passivating agent for core-shell aluminum nanoparticles with very high active aluminum content. Solid State Sci 2013; 23: 8-12.
[20]
Hammerstroem DW, Burgers MA, Chung SW, et al. Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: Ratio-dependent stability and particle size. Inorg Chem 2011; 50(11): 5054-9.
[21]
Chung SW, Guliants EA, Bunker CE, Jelliss PA, Buckner SW. Size-dependent nanoparticle reaction enthalpy: Oxidation of aluminum nanoparticles. J Phys Chem Solids 2011; 72(6): 719-24.
[22]
Jelliss PA, Patel A, Thomas BJ, et al. Polymerization passivation strategies for the stabilization of energetic aluminum nanomaterials. Nanotech 2013: Advanced Materials, CNTs, Particles. Films Compos 2013; 1: 358-61.
[23]
Jelliss PA, Thomas BJ, Patel A. Polymerization passivation strategies for the stabilization of energetic aluminum nanomaterials. Int J Chem 2014; 3: 122-31.
[24]
Thomas BJ, Bunker CE, Guliants EA, et al. Synthesis of aluminum nanoparticles capped with copolymerizable epoxides. J Nanopart Res 2013; 15(6): 1729.
[25]
Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 2010; 35(1-2): 278-301.
[26]
Shahravan A, Desai T, Matsoukas T. Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials. ACS Appl Mater Inter 2014; 6(10): 7942-7.
[27]
Patel A, Becic J, Buckner SW, Jelliss PA. Reactive aluminum metal nanoparticles within a photodegradable poly(methyl methacrylate) matrix. Chem Phys Lett 2014; 591: 268-72.
[28]
Zeng WH, Buckner SW, Jelliss PA. Poly(methyl methacrylate) as an environmentally responsive capping material for aluminum nanoparticles. ACS Omega 2017; 2(5): 2034-40.
[29]
Madhankumar A, Nagarajan S, Rajendran N, Nishimura T. EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test. J Solid State Electr 2012; 16(6): 2085-93.
[30]
Nishimura T, Raman V. Corrosion prevention of aluminum nanoparticles by a polyurethane coating. Materials 2014; 7(6): 4710-22.
[31]
Nishimura T, Raman V. Epoxy polymer coating to prevent the corrosion of aluminum nanoparticles. Polym Adv Technol 2016; 27(6): 712-7.
[32]
Haber JA, Buhro WE. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J Am Chem Soc 1998; 120(42): 10847-55.
[33]
Ghanta SR, Muralidharan K. Solution phase chemical synthesis of nano aluminium particles stabilized in poly(vinylpyrrolidone) and poly(methylmethacrylate) matrices. Nanoscale 2010; 2(6): 976-80.
[34]
Ghanta SR, Muralidharan K. Chemical synthesis of aluminum nanoparticles. J Nanopart Res 2013; 15(6): 1715.
[35]
Gottapu S, Padhi SK, Krishna MG, Muralidharan K. Poly(vinylpyrrolidone) stabilized aluminum nanoparticles obtained by the reaction of SiCl4 with LiAlH4. New J Chem 2015; 39(7): 5203-7.
[36]
Esmaeili B, Chaouki J, Dubois C. Nanoparticle encapsulation by a polymer via in situ polymerization in supercritical conditions. Polym Eng Sci 2012; 52(3): 637-42.
[37]
Atmane YA, Sicard L, Lamouri A, et al. Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method. J Phys Chem C 2013; 117(49): 26000-6.
[38]
Abdelkader EM, Jelliss PA, Buckner SW. Main group nanoparticle synthesis using electrical explosion of wires. Nano-Struct Nano-Objects 2016; 7(Supplement. C): 23-31.
[39]
Huang XY, Ma ZS, Wang YQ, Jiang PK, Yin Y, Li Z. Polyethylene/aluminum nanocomposites: Improvement of dielectric strength by nanoparticle surface modification. J Appl Polym Sci 2009; 113(6): 3577-84.
[40]
Huang XY, Kim CN, Ma ZS, Jiang PK, Yin Y, Li Z. Correlation between rheological, electrical, and microstructure characteristics in polyethylene/aluminum nanocomposites. J Polym Sci, B, Polym Phys 2008; 46(20): 2143-54.
[41]
Huang XY, Jiang PK, Kim CN, Ke QQ, Wang GL. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics. Compos Sci Technol 2008; 68(9): 2134-40.
[42]
Shao H, Liu T, Wang Y, Xu H, Li X. Preparation of Mg-based hydrogen storage materials from metal nanoparticles. J Alloys Compd 2008; 465(1): 527-33.
[43]
Kojima Y, Kawai Y, Haga T. Magnesium-based nano-composite materials for hydrogen storage. J Alloys Compd 2006; 424(1): 294-8.
[44]
Reiser A, Bogdanović B, Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems. Int J Hydrogen Energy 2000; 25(5): 425-30.
[45]
Shao H, Wang Y, Xu H, Li X. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem 2005; 178(7): 2211-7.
[46]
Shao H, Xu H, Wang Y, Li X. Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J Solid State Chem 2004; 177(10): 3626-32.
[47]
Xuanzhou Z, Rong Y, Jianglan Q, et al. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6. Nanotechnology 2010; 21(9): 095706.
[48]
Tomozawa M, Hiromoto S. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Appl Surf Sci 2011; 257(19): 8253-7.
[49]
Sathiyanarayanan S, Azim SS, Venkatachari G. Corrosion resistant properties of polyaniline-acrylic coating on magnesium alloy. Appl Surf Sci 2006; 253(4): 2113-7.
[50]
Eslami A, Hosseini SG, Shariaty SHM. Stabilization of ammonium azide particles through its microencapsulation with some organic coating agents. Powder Technol 2011; 208(1): 137-43.
[51]
Pourmortazavi SM, Babaee S, Ashtiani FS. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer. Appl Surf Sci 2015; 349(Suppl. C): 817-25.
[52]
Hosseini SG, Pourmortazavi SM, Fathollahi M. Orthogonal array design for the optimization of silver recovery from waste photographic paper. Sep Sci Technol 2004; 39(8): 1953-66.
[53]
Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Alamdari RF, Rahimi-Nasrabadi M. Determination of the optimal conditions for synthesis of silver oxalate nanorods. Chem Eng Technol 2008; 31(10): 1532-5.
[54]
Pourmortazavi SM, Babaee S, Marashianpour Z, Kohsari I. Stabilizing of magnesium powder by microencapsulation with azidodeoxy cellulose nitrate. Prog Org Coat 2015; 81(Suppl. C): 107-15.
[55]
Jeon K-J, Moon HR, Ruminski AM, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 2011; 10: 286.
[56]
Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 2007; 32(13): 2400-7.
[57]
de Jongh PE, Wagemans RWP, Eggenhuisen TM, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater 2007; 19(24): 6052-7.
[58]
Haas I, Gedanken A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. J Chem Soc Chem Commun 2008; (15): 1795-7.
[59]
Li W, Li C, Ma H, Chen J. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 2007; 129(21): 6710-1.
[60]
Makridis SS, Gkanas EI, Panagakos G, et al. Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int J Hydrogen Energy 2013; 38(26): 11530-5.
[61]
Chen P, Sun J, Zhu Y, et al. Corrosion resistance of biodegradable Mg with a composite polymer coating. J Biomater Sci Polym Ed 2016; 27(17): 1763-74.
[62]
Abdelkader EM, Jelliss PA, Buckner SW. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN. Mater Chem Phys 2015; 149-150(Suppl. C): 238-45.
[63]
Venkatachalam K, Gavalas VG, Xu S, de Leon AC, Bhattacharyya D, Bachas LG. Poly(amino acid)-facilitated electrochemical growth of metal nanoparticles. J Nanosci Nanotechnol 2006; 6(8): 2408-12.
[64]
Ates M. Comparison of corrosion protection of chemically and electrochemically synthesized poly(N-vinylcarbazole) and its nanocomposites on stainless steel. J Solid State Electrochem 2015; 19(2): 533-41.
[65]
Park EJ, Lee SW, Bang IC, Park HW. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids. Nanoscale Res Lett 2011; 6(1): 223.
[66]
Lin C-H, Tseng S-K. Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode. Chemosphere 1999; 39(13): 2375-89.
[67]
Kim YH, Carraway ER. Dechlorination of chlorinated phenols by zero valent zinc. Environ Technol 2003; 24(12): 1455-63.
[68]
Muthirulan P, Rajendran N. Poly(o-phenylenediamine) coatings on mild steel: Electrosynthesis, characterization and its corrosion protection ability in acid medium. Surf Coat Tech 2012; 206(8-9): 2072-8.
[69]
Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 2004; 32(1-2): 33-177.
[70]
Barbe CJ, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 1997; 80(12): 3157-71.
[71]
Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta 2006; 443(1): 1-36.
[72]
Reid DL, Russo AE, Carro RV, et al. Nanoscale additives tailor energetic materials. Nano Lett 2007; 7(7): 2157-61.
[73]
Reid DL, Kreitz KR, Stephens MA, et al. Development of highly active titania-based nanoparticles for energetic materials. J Phys Chem C 2011; 115(21): 10412-8.
[74]
Shyu I-M, Liu T-K. Combustion characteristics of GAP-coated boron particles and the fuel-rich solid propellant. Combust Flame 1995; 100(4): 634-44.
[75]
Shin WG, Han D, Park Y, Hyun HS, Sung H-G, Sohn Y. Combustion of boron particles coated with an energetic polymer material. Korean J Chem Eng 2016; 33(10): 3016-20.