[1]
Das, A. Diabetic Retinopathy: Battling the global epidemic. Invest. Ophthalmol. Vis. Sci., 2016, 57(15), 6669-6682.
[2]
Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes Care, 2017, 40(3), 412-418.
[3]
Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; Haffner, S.; Hamman, R.F.; Ikram, M.K.; Kayama, T.; Klein, B.E.; Klein, R.; Krishnaiah, S.; Mayurasakorn, K.; O’Hare, J.P.; Orchard, T.J.; Porta, M.; Rema, M.; Roy, M.S.; Sharma, T.; Shaw, J.; Taylor, H.; Tielsch, J.M.; Varma, R.; Wang, J.J.; Wang, N.; West, S.; Xu, L.; Yasuda, M.; Zhang, X.; Mitchell, P.; Wong, T.Y. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3), 556-564.
[4]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; Involvement of autophagy, Inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[5]
Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight, 2017, 2(14), 1-13.
[6]
Nentwich, M.M. Diabetic retinopathy - ocular complications of diabetes mellitus. World J. Diabetes, 2015, 6(3), 489.
[7]
Ola, M.S. Novel drugs and their targets in the potential treatment of diabetic retinopathy. Med. Sci. Monit., 2013, 19, 300-308.
[8]
de Moraes, G.; Layton, C.J. Therapeutic targeting of diabetic retinal neuropathy as a strategy in preventing diabetic retinopathy. Clin. Experiment. Ophthalmol., 2016, 44(9), 838-852.
[9]
Mohammad, G.; Siddiquei, M.M. Role of matrix metalloproteinase-2 and -9 in the development of diabetic retinopathy. J. Ocul. Biol. Dis. Infor., 2012, 5(1), 1-8.
[10]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[11]
Lewandowski, K.C.; Banach, E.; Bieńkiewicz, M.; Lewiński, A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: Effects of short-term and chronic hyperglycaemia. Arch. Med. Sci., 2011, 7(2), 294-303.
[12]
Kowluru, R.A.; Mohammad, G.; Dos Santos, J.M.; Zhong, Q. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage. Diabetes, 2011, 60(11), 3023-3033.
[13]
Mohammad, G.; Kowluru, R.A. Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3832-3841.
[14]
Kowluru, R.A. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Investig. Opthalmology Vis. Sci., 2010, 51(8), 4320.
[15]
Kaphingst, K.A.; Persky, S.; Lachance, C. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J. Cell. Physiol., 2010, 14(4), 384-399.
[16]
Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De La Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye, 2017, 31(8), 1122-1130.
[17]
Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[18]
Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G.; White, A.J.R. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. (Lond.), 2017, 131(24), 2865-2883.
[19]
Kowluru, R.A.; Kanwar, M. Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Biol. Med., 2010, 46(12), 1677-1685.
[20]
Kowluru, R.A.; Shan, Y. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(5), 955-962.
[21]
Kowluru, R.A.; Santos, J.M.; Zhong, Q. Sirt1, A negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2014, 55(9), 5653-5660.
[22]
Juuti-Uusitalo, K.; Nieminen, M.; Treumer, F.; Ampuja, M.; Kallioniemi, A.; Klettner, A.; Skottman, H. Effects of cytokine activation and oxidative stress on the function of the human embryonic stem cell-derived retinal pigment epithelial cells. Investig. Opthalmology Vis. Sci., 2015, 56(11), 6265.
[23]
Yoshida, S.; Murata, M.; Noda, K.; Matsuda, T.; Saito, M.; Saito, W.; Kanda, A.; Ishida, S. Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells. Jpn. J. Ophthalmol., 2018, 62(2), 256-264.
[24]
Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 1-12.
[25]
Bek, T. Mitochondrial dysfunction and diabetic retinopathy. Mitochondrion, 2017, 36, 4-6.
[26]
Mishra, M.; Lillvis, J.; Seyoum, B.; Kowluru, R.A. Peripheral blood mitochondrial dna damage as a potential noninvasive biomarker of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2016, 57(10), 4035.
[27]
Mohammad, G.; Kowluru, R.A. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab. Invest., 2011, 90(9), 1365-1372.
[28]
Tien, T.; Zhang, J.; Muto, T.; Kim, D.; Sarthy, V.P.; Roy, S. High glucose induces mitochondrial dysfunction in retinal müller cells: Implications for diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 2915.
[29]
Tremolada, G.; Del Turco, C.; Lattanzio, R.; Maestroni, S.; Maestroni, A.; Bandello, F.; Zerbini, G. The role of angiogenesis in the development of proliferative diabetic retinopathy: Impact of intravitreal anti-VEGF treatment. Exp. Diabetes Res., 2012, 2012, 728325.
[30]
Feng, Y.; Wang, Y.; Pfister, F.; Hillebrands, J.L.; Deutsch, U.; Hammes, H.P. Decreased hypoxia-induced neovascularization in angiopoietin-2 heterozygous knockout mouse through reduced mmp activity. Cell. Physiol. Biochem., 2009, 23(4-6), 277-284.
[31]
Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; Immonen, I. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol., 2013, 91(6), 531-539.
[32]
Abu El-Asrar, A.M.; Ahmad, A.; Bittoun, E.; Siddiquei, M.M.; Mohammad, G.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmol., 2018, 96(1), e27-e37.
[33]
Gong, C.Y.; Lu, B.; Sheng, Y.C.; Yu, Z.Y.; Zhou, J.Y.; Ji, L.L. The development of diabetic retinopathy in goto-kakizaki rat and the expression of angiogenesis-related signals. Chin. J. Physiol., 2016, 59(2), 100-108.
[34]
Ye, P.; Liu, J.; He, F.; Xu, W.; Yao, K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int. J. Med. Sci., 2013, 11(1), 17-23.
[35]
Mao, X.B.; You, Z.P.; Wu, C.; Huang, J. Potential suppression of the high glucose and insulin-induced retinal neovascularization by sirtuin 3 in the human retinal endothelial cells. Biochem. Biophys. Res. Commun., 2017, 482(2), 341-345.
[36]
Abu El-Asrar, A.M.; Alam, K.; Nawaz, M.I.; Mohammad, G.; Van den Eynde, K.; Siddiquei, M.M.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Upregulation of thrombin/matrix metalloproteinase-1/protease-activated receptor-1 chain in proliferative diabetic retinopathy. Curr. Eye Res., 2016, 41(12), 1590-1600.
[37]
Mohammad, G.; Vandooren, J.; Siddiquei, M.M.; Martens, E.; Abu El-Asrar, A.M.; Opdenakker, G. Functional links between gelatinase B/matrix metalloproteinase-9 and prominin-1/CD133 in diabetic retinal vasculopathy and neuropathy. Prog. Retin. Eye Res., 2014, 43, 76-91.
[38]
Beranek, M.; Kolar, P.; Tschoplova, S.; Kankova, K.; Vasku, A. Genetic variations and plasma levels of gelatinase a (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol. Vis., 2008, 14, 1114-1121.
[39]
Singh, K.; Goyal, P.; Singh, M.; Deshmukh, S.; Upadhyay, D.; Kant, S.; Agrawal, N.K.; Gupta, S.K.; Singh, K. Association of functional SNP-1562C > T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients. J. Diabetes Complications, 2017, 31(12), 1648-1651.
[40]
Abu El-Asrar, A.M.; Siddiquei, M.M.; Nawaz, M.I.; De Hertogh, G.; Mohammad, G.; Alam, K.; Mousa, A.; Opdenakker, G. Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor, and MMP-9 in proliferative diabetic retinopathy. Mol. Vis., 2016, 22, 424-435.
[41]
Abu El-Asrar, A.M.; Ahmad, A.; Alam, K.; Siddiquei, M.M.; Mohammad, G.; Hertogh, G.; De Mousa, A.; Opdenakker, G. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmol., 2017, 95(7), 697-704.
[42]
Khan, Z.A.; Chakrabarti, S. Cellular signaling and potential new treatment targets in diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 1-12.
[43]
Mohammad, G.; Kowluru, R.A. Diabetic retinopathy & signaling mechanism for activation of MMP9. J. Cell. Physiol., 2012, 227(3), 1052-1061.
[44]
Mohammad, G.; Siddiquei, M.M.; Nawaz, M.I.; El-asrar, A.M.A. The ERK1/2 inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina. J. Diabetes Res., 2013, 2013, 1-9.
[45]
Miyata, Y.; Kase, M.; Sugita, Y.; Shimada, A.; Nagase, T.; Katsura, Y.; Kosano, H. Protein kinase C-mediated regulation of matrix metalloproteinase and tissue inhibitor of metalloproteinase production in a human retinal müller cells. Curr. Eye Res., 2012, 37(9), 842-849.
[46]
Ozawa, Y.; Nakao, K.; Kurihara, T.; Shimazaki, T.; Shimmura, S.; Ishida, S.; Yoshimura, A.; Tsubota, K.; Okano, H. Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J. Biol. Chem., 2008, 283(36), 24561-24570.
[47]
Chen, M.; Wang, W.; Ma, J.; Ye, P.; Wang, K. High glucose induces mitochondrial dysfunction and apoptosis in human retinal pigment epithelium cells via promoting SOCS1 and Fas/FasL signaling. Cytokine, 2016, 78, 94-102.
[48]
Zhu, S.H.; Liu, B.Q.; Hao, M.J.; Fan, Y.X.; Qian, C.; Teng, P.; Zhou, X.W.; Hu, L.; Liu, W.T.; Yuan, Z.L.; Li, Q.P. Paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy. Inflammation, 2017, 40(5), 1475-1486.
[49]
Wang, H.; Xing, W.; Tang, S.; Wang, Z.; Lv, T.; Wu, Y.; Guo, S.; Li, C.; Han, J.; Zhu, R.; Wang, W. HuoXueJieDu formula alleviates diabetic retinopathy in rats by inhibiting SOCS3-STAT3 and TIMP1-A2M pathways. Int. J. Genomics, 2017, 2017, 4832125.
[50]
Mao, H.; Lockyer, P.; Townley-Tilson, D.; Xie, L.; Pi, X. LRP1 regulates retinal angiogenesis by inhibiting PARP-1 activity and endothelial cell proliferation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(2), 87-92.
[51]
Hossain, A.; Tauhid, L.; Davenport, I.; Huckaba, T.; Graves, R.; Mandal, T.; Muniruzzaman, S.; Ahmed, S.A.; Bhattacharjee, P.S. LRP-1 pathway targeted inhibition of vascular abnormalities in the retina of diabetic mice. Curr. Eye Res., 2017, 42(4), 640-647.
[52]
Miloudi, K.; Binet, F.; Wilson, A.; Cerani, A.; Oubaha, M.; Menard, C.; Henriques, S.; Mawambo, G.; Dejda, A.; Nguyen, P.T.; Rezende, F.A.; Bourgault, S.; Kennedy, T.E.; Sapieha, P. Truncated netrin-1 contributes to pathologic vascular permeability in diabetic retinopathy. J. Clin. Invest., 2016, 126(8), 3006-3022.
[53]
Forough, R.; Weylie, B.; Collins, C.; Parker, J.L.; Zhu, J.; Barhoumi, R.; Watson, D.K. Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: Role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J. Vasc. Res., 2006, 43(4), 327-337.
[54]
Kowluru, R.A.; Mishra, M. Contribution of epigenetics in diabetic retinopathy. Sci. China Life Sci., 2015, 58(6), 556-563.
[55]
Liu, P.; Wilson, M.J. miR-520c and miR-373 target mTOR and SIRT1, activate the Ras/ Raf/MEK/Erk pathway and NF-κB, with up-regulation of MMP9 in human fibrosarcoma cells. J. Cell. Physiol., 2012, 227(2), 867-876.
[56]
Pavlová, S.; Klucska, K.; Vašíček, D.; Ryban, L.; Harrath, A.H.; Alwasel, S.H.; Sirotkin, A.V. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim. Reprod. Sci., 2013, 140(3-4), 180-188.
[57]
Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 2013, 25(10), 1939-1948.
[58]
Kowluru, R.A.; Santos, J.M.; Mishra, M. Epigenetic modifications and diabetic retinopathy. BioMed Res. Int., 2013, 2013, 635284.
[59]
Zhong, Q.; Kowluru, R.A. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes, 2013, 62(7), 2559-2568.
[60]
Kadiyala, C.S.R.; Zheng, L.; Du, Y.; Yohannes, E.; Kao, H.Y.; Miyagi, M.; Kern, T.S. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J. Biol. Chem., 2012, 287(31), 25869-25880.
[61]
Song, C.; Zhu, S.; Wu, C.; Kang, J. Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J. Biol. Chem., 2013, 288(39), 28021-28033.
[62]
Mani, S.K.; Kern, C.B.; Kimbrough, D.; Addy, B.; Kasiganesan, H.; Rivers, W.T.; Patel, R.K.; Chou, J.C.; Spinale, F.G.; Mukherjee, R.; Menick, D.R. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2015, 308(11), H1391-H1401.
[63]
Kwa, F.A.A.; Thrimawithana, T.R. Epigenetic modifications as potential therapeutic targets in age-related macular degeneration and diabetic retinopathy. Drug Discov. Today, 2014, 19(9), 1387-1393.
[64]
Abu El-Asrar, A.M.; Mohammad, G.; Nawaz, M.I.; Siddiquei, M.M.; Van Den Eynde, K.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS One, 2013, 8(12), 1-11.
[65]
Shitama, T.; Hayashi, H.; Noge, S.; Uchio, E.; Oshima, K.; Takemori, N.; Komori, N.; Matsumoto, H. Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin. Appl., 2008, 2(9), 1265-1280.
[66]
Ortiz, G.; Salica, J.P.; Chuluyan, E.H.; Gallo, J.E. Diabetic retinopathy: Could the alpha-1 antitrypsin be a therapeutic option? Biol. Res., 2014, 47(1), 58.
[67]
Kim, H.S.; Luo, L.; Pflugfelder, S.C.; Li, D.Q. Doxycycline inhibits TGF-β1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2005, 46(3), 840-848.
[68]
Scott, I.U.; Jackson, G.R.; Quillen, D.A.; Larsen, M.; Klein, R.; Liao, J.; Holfort, S.; Munch, I.C.; Gardner, T.W. Effect of doxycycline vs. placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy. JAMA Ophthalmol., 2014, 132(5), 535-543.
[69]
Di, Y.; Nie, Q.Z.; Chen, X.L. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization. Int. J. Ophthalmol., 2016, 9(6), 804-808.
[70]
Ioannidou, E.; Tseriotis, V.S.; Tziomalos, K. Role of lipid-lowering agents in the management of diabetic retinopathy. World J. Diabetes, 2017, 8(1), 1-6.
[71]
El-Azab, M.F.; Mysona, B.A.; El-Remessy, A. Statins for prevention of diabetic-related blindness: A new treatment option? Expert Rev. Ophthalmol., 2011, 6(3), 269-272.
[72]
Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res., 2012, 30(5), 343-358.
[73]
Bhatt, L.K.; Addepalli, V. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats. Am. J. Transl. Res., 2010, 2(2), 181-189.
[74]
Parkar, N.; Addepalli, V. Nobiletin ameliorates streptozotocin induced diabetic retinopathy in experimental rat. Discov. Phytomed., 2014, 1, 3-7.
[75]
Kaur, H.; Chen, S.; Xin, X.; Chiu, J.; Khan, Z.A.; Chakrabarti, S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes, 2006, 55(11), 3104-3111.
[76]
Miller, C.G.; Budoff, G.; Prenner, J.L.; Schwarzbauer, J.E. Fibronectin in retinal disease. Exp. Biol. Med., 2017, 242(1), 1-7.
[77]
Feng, B.; Chen, S.; McArthur, K.; Wu, Y.; Sen, S.; Ding, Q.; Feldman, R.D.; Chakrabarti, S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011, 60(11), 2975-2984.
[78]
Wu, Y.; Feng, B.; Chen, S.; Chakrabarti, S. ERK5 regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Invest. Ophthalmol. Vis. Sci., 2012, 53(13), 8405-8413.
[79]
Kota, S.; Meher, L.; Jammula, S.; Kota, S.; Krishna, S.V.S.; Modi, K. Aberrant angiogenesis: The gateway to diabetic complications. Indian J. Endocrinol. Metab., 2012, 16(6), 918.
[80]
Grant, M.B.; Caballero, S.; Bush, D.M.; Spoerri, P.E. Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes, 1998, 47(8), 1335-1340.
[81]
Kota, S.K.; Meher, L.K.; Jammula, S.; Kota, S.K.; Krishna, S.V.; Modi, K.D. Aberrant angiogenesis: The gateway to diabetic complications. Indian J. Endocrinol. Metab., 2012, 16(6), 918-930.
[82]
Murphy, P.A.; Begum, S.; Hynes, R.O. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors. PLoS One, 2015, 10(3), e0120872.
[83]
Chaturvedi, M.; Kaczmarek, L. MMP-9 inhibition: A therapeutic strategy in ischemic stroke. Mol. Neurobiol., 2014, 49(1), 563-573.
[84]
Jo, H.; Jung, S.; Kang, J.; Yim, H.; Kang, K. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep., 2014, 47(11), 637-642.
[85]
Di, Y.; Nie, Q.Z.; Chen, X.L. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization. Int. J. Ophthalmol., 2016, 9(6), 804-808.
[86]
Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alternation of the blood-retinal barrier. Lab. Invest., 2005, 85(5), 597-607.
[87]
Fields, G.B. New strategies for targeting matrix metalloproteinases. Matrix Biol., 2015, 44, 239-246.
[88]
Paemen, L.; Martens, E.; Masure, S.; Opdenakker, G. Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two‐site ELISA and inhibition of enzymatic activity. Eur. J. Biochem., 1995, 234(3), 759-765.
[89]
Hu, J.; Van den Steen, P.E.; Houde, M.; Ilenchuk, T.T.; Opdenakker, G. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity: comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem. Pharmacol., 2004, 67(5), 1001-1009.
[90]
Martens, E.; Leyssen, A.; Van Aelst, I.; Fiten, P.; Piccard, H.; Hu, J.; Descamps, F.J.; Van den Steen, P.E.; Proost, P.; Van Damme, J.; Liuzzi, G.M. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim. Biophys. Acta, 2007, 1770(2), 178-186.
[91]
Pruijt, J.F.; Fibbe, W.E.; Laterveer, L.; Pieters, R.A.; Lindley, I.J.; Paemen, L.; Masure, S.; Willemze, R.; Opdenakker, G. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10863-10868.
[92]
Devy, L.; Huang, L.; Naa, L.; Yanamandra, N.; Pieters, H.; Frans, N.; Chang, E.; Tao, Q.; Vanhove, M. jeune, A.; van Gool, R. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res., 2009, 69(4), 1517-1526.
[93]
Zucker, S.; Cao, J. Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biol. Ther., 2009, 8(24), 2371-2373.
[94]
Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol., 2005, 23(9), 1105.
[95]
Nam, D.H.; Rodriguez, C.; Remacle, A.G.; Strongin, A.Y. Ge. X. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc. Natl. Acad. Sci. USA, 2016, 113(52), 14970-14975.
[96]
Lopez, T.; Nam, D.H.; Kaihara, E.; Mustafa, Z.; Ge, X. Identification of highly selective MMP‐14 inhibitory FABS by deep sequencing. Biotechnol. Bioeng., 2017, 114(6), 1140-1150.
[97]
Marshall, D.C.; Lyman, S.K.; McCauley, S.; Kovalenko, M.; Spangler, R.; Liu, C.; Lee, M.; O’Sullivan, C.; Barry-Hamilton, V.; Ghermazien, H.; Mikels-Vigdal, A. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One, 2015, 10(5), e0127063.
[98]
Gálvez, B.G.; Matías-Román, S.; Albar, J.P.; Sánchez-Madrid, F.; Arroyo, A.G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and; matrix remodeling. J. Biol. Chem., 2001, 276(40), 37491-37500.
[99]
Talmi-Frank, D.; Altboum, Z.; Solomonov, I.; Udi, Y.; Jaitin, D.A.; Klepfish, M.; David, E.; Zhuravlev, A.; Keren-Shaul, H.; Winter, D.R.; Gat-Viks, I. Extracellular matrix proteolysis by MT1-MMP contributes to influenza-related tissue damage and mortality. Cell Host Microbe, 2016, 20(4), 458-470.
[100]
Udi, Y.; Grossman, M.; Solomonov, I.; Dym, O.; Rozenberg, H.; Moreno, V.; Cuniasse, P.; Dive, V.; Arroyo, A.G.; Sagi, I. Inhibition mechanism of membrane metalloprotease by an exosite-swiveling conformational antibody. Structure, 2015, 23(1), 104-115.