[1]
Hoffmann, M.R.; Martin, S.R.; Choi, W.; Bahnemannt, D.W.; Keck, W.M. Environmental applications of semiconductors. Chem. Rev., 1995, 95, 69.
[2]
Kudo, A. Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy, 2006, 31, 197.
[3]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO 2 photocatalysis and related surface phenomena. Surf. Sci. Reports., 2008, 63, 515.
[4]
Sivachidambaram, M.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Al-Lohedane, H.; Ramalingame, R. A luminescent metal–organic framework as an ideal chemosensor for nitroaromatic compounds. RSC Adv, 2017, 7(62), 38861.
[5]
Anand, K.; Kaviyarasu, K.; Muniyasamy, S.; Roopan, S.M.; Gengan, R.M.; Chuturgoon, A.A. Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management. J. Cluster Sci., 2017, 28, 2279.
[6]
Rajan, I.P.; Vijaya, J.J.; Jesudoss, S.; Kaviyarasu, K.; Kennedy, L.; Jothiramalingam, R.; Al-Lohedan, H.; Vaali-Mohammed, M. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains. Mater. Res. Express, 2017, 4(8), 085030.
[7]
Fuku, X.; Matinise, N.; Masikini, M.; Kasinathan, K.; Maaza, M. An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: Use in photo-catalytic applications. Mater. Res. Bull., 2018, 97, 457.
[8]
Magdalane, M.C.; Kaviyarasuc, K.; Vijay, J.J.; Siddhardhaf, B.; Kennedy, J.; Maaza, M. Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine-B dye for textile engineering application. J. Alloys Compd., 2017, 727, 1324.
[9]
Kaviyarasu, K.; Magdalane, M.C.; Kanimozhi, K.; Kennedy, J.; Maaza, M. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B Biol, 2017, 173, 466-475.
[10]
Kaviyarasu, K.; Kanimozhi, K.; Matinise, N.; Magdalane, M.C.; Maaza, M. Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: Investigation of bio-electronic application. Mater. Sci. Eng. C, 2017, 76, 1012.
[11]
Magdalane, M.C.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyara, B. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies. J. Photochem. Photobiol. B Biol, 2017, 173, 23.
[12]
Kaviyarasu, K.; Mariappan, A.; Neyvasagam, K.; Ayeshamariam, A.; Maaza, M. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf. Interfaces, 2017, 6, 247.
[13]
Magdalane, M.C.; Kaviyarasu, K.; Vijaya, J.J.; Jayakumar, C.; Jeyaraj, B. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV–illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities. J. Photochem. Photobiol. B Biol, 2017, 169, 110.
[14]
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for watersplitting. Chem. Soc. Rev., 2009, 38, 253.
[15]
Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ., 2004, 49, 1.
[16]
Hegen, J. Industrial Catalysis; WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2006.
[17]
Kaneko, M.; Okura, I. Kodansha encyclopedia of Japan. Kodansha
-Springer, Tokyo, Japan, 2002.
[18]
Vassiltsova, O.V.; Parmon, V.N. Encyclopedic Dictionary of Named Processes in Chemical Technology; Taylor & Francis Group, LLC: UK, 2003.
[19]
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Reports., 2003, 48, 53.
[20]
Frank, O.E. inorganic materials as catalysts for photochemical splitting of water. Chem. Mater., 2008, 20, 35.
[21]
Bojinova, A.; Kralchevska, R.; Poulios, I.; Dushkin, C. Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry. Mater. Chem. Phys., 2007, 106, 187.
[22]
Michael, H.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Reports., 2011, 66, 185.
[23]
Yamazaki, S.; Hori, K. CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catal. Lett., 1999, 59, 19.
[24]
Wang, H.; Wu, Z.; Liu, Y.; Sheng, Z. The characterization of ZnO–anatase–rutile three-component semiconductor and enhanced photocatalytic activity of nitrogen oxides. J. Mol. Catal. A Chem., 2008, 287, 176.
[25]
Frank, C. Nanoengineering of particle surfaces. Adv. Mater., 2001, 13, 11.
[26]
Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 2004, 104, 3893.
[27]
Bawendi, M.G.; Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. B, 1997, 101, 9463.
[28]
Xiaogang, P. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater., 2003, 15, 2854.
[29]
Moungi, B. Type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) heterostructures. J. Am. Chem. Soc., 2003, 125, 11466.
[30]
Asl, K.S.H.; Rad, K.M.; Sadrnezhaad, S.K. The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders. Mater. Lett., 2010, 64, 1935.
[31]
Sobana, N.; Swaminathan, M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separat. Purif. Technol., 2007, 56, 101.
[32]
Ding, Z.; Lu, G.Q.; Greenfield, P.F. adiabatic connection for kinetics. Phys. Chem. B, 2000, 104, 4815.
[33]
Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem., 2004, 162, 317.
[34]
Chatterjee, D.; Dasgupta, S.H. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev., 2005, 6, 186.
[35]
Gregorio, C. Non-conventional low-cost adsorbents for dye removal: A review. Biores. Technol., 2006, 97, 1061.
[36]
Gong, S.H.; Yao, D.; Feng, X.; Jiang, H. Quantum size dependent optical nutation in a core-shell CdSe/ZnS quantum dot. Microelectron J., 2006, 37, 904.