[1]
Aydoğan, M.; Korkmaz, A.; Barlas, N.; Kolankaya, D. Pro-oxidant effect of vitamin C coadministration with bisphenol A, nonylphenol, and octylphenol on the reproductive tract of male rats. Drug Chem. Toxicol., 2010, 33(2), 193.
[2]
Welshons, W.V.; Nagel, S.C.; Vom Saal, F.S. Large effects from small exposures III Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 2006, 147(6 Suppl. 1), 56-69.
[3]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-Octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116, 39.
[4]
Kang, J.; Aasi, D.; Katayama, Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol., 2007, 37(7), 607.
[5]
Loganathan, S.N.; Kannan, K. Occurrence of bisphenol A in indoor dust from two locations in the eastern united states and implications for human exposures. Arch. Environ. Contam. Toxicol., 2011, 61, 68.
[6]
Manfo, F.P.T.; Jubendradass, R.; Nantiam, E.A.; Moundipa, P.F.; Mathur, P.P. Adverse Effects of Bisphenol A on Male Reproductive Function. Rev. Environ. Contam. Toxicol., 2014, 228(228), 57.
[7]
Markey, C.M.; Luque, E.H.; Munoz, D.T.M.; Sonnenschein, C.; Soto, A.M. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol. Reprod., 2001, 65(4), 1215-1223.
[8]
Rubin, B.S.; Soto, A.M.; Bisphenol, A. Perinatal exposure and body weight. Mol. Cell. Endocrinol., 2009, 304(1-2), 55.
[9]
Bonefeld, J.; Rgensen, E.C.; Long, M.; Hofmeister, M.V.; Vinggaard, A.V. Endocrine-Disrupting potential of bisphenol a, bisphenol A dimethacrylate, 4-n-Nonylphenol, and 4-n-octylphenol in Vitro: New data and a brief review. Environ. Health Perspect., 2007, 115(Suppl. 1), 69-76.
[10]
Crain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, Jr L.J. An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod. Toxicol., 2007, 24(2), 225-239.
[11]
Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol., 2007, 24(2), 178-198.
[12]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42(12), 132.
[13]
Feng, W.; Jing, H.; Chen, M.; Xia, Y.; Zhang, Q.; Zhao, R.; Zhou, W.; Zhang, Z.; Wang, B. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup. Environ. Med., 2012, 69(9), 679-684.
[14]
Han, L.; Wang, B. The application of bisphenol a in food packaging materials safety research progress. Packag. Food Machin, 2016, 35(9), 62-65.
[15]
Zhang, X.Z.H.S.G.; Wu, M.S. Environmental behavior of Biphenol A - a review. J. Anyang Inst. Technol, 2006, 2, 10-17.
[16]
Yang, Y.J.; Yin, J.; Shao, B. Research progress of bisphenol S: A substitute for bisphenol A. Cap. J. Public Health, 2016, 10(5), 222-225.
[17]
Boockfor, F.R.; Blake, C.A. Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod., 1997, 57(2), 267-277.
[18]
Haavisto, T.E.; Adamsson, N.A.; Myllym, S.A.; Toppari, J.; Paranko, J. Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod. Toxicol., 2003, 17(5), 593.
[19]
Chitra, K.; Latchoumycandane, C.; Mathur, P. Effect of nonylphenol on the antioxidant system in epididymal sperm of rats. Arch. Toxicol., 2002, 76(9), 545-551.
[20]
Aydoğan, M.; Barlas, N. Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 2006, 22(3), 455.
[21]
Kabuto, H.; Hasuike, S.; Minagawa, N.; Shishibori, T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res., 2003, 93, 31-35.
[22]
Kabuto, H.; Amakawa, M.; Shishibori, T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci., 2004, 74(24), 2931-2940.
[23]
Korkmaz, A.; Ahbab, M.A.; Kolankaya, D.; Barlas, N. Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem. Toxicol.: An Intl. J. Pub. Brit. Indust. Biol. Res. Associat., 2010, 48(10), 2865-2871.
[24]
Franco, R.; Sanchez-Olea, R.R. Em; Panayiotidis, M. Environmental toxicity, oxidative stress and apoptosis: Menage a trois. Mutat. Res., 2009, 674(2), 3-22.
[25]
Marmugi, A.; Ducheix, S.; Lasserre, F.; Polizzi, A.; Paris, A.; Priymenko, N.; Bertrand-Michel, J.; Pineau, T.; Guillou, H.; Martin, P.G.P.; Mselli-Lakhal, L. Low doses of bisphenol a induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology, 2012, 55(2), 395-407.
[26]
Hugo, E.R.; Brandebourg, T.D.; Woo, J.G.; Loftus, J.; Alexander, J.W.; Ben-Jonathan, N. Bisphenol a at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect., 2008, 116(12), 1642.
[27]
Nadal, A.; Alonso, M.P.S. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol., 2009, 304(1-2), 63.
[28]
Cabaton, N.J.; Canlet, C.; Wadia, P.R.; Tremblay-Franco, M.; Gautier, R.; Molina, J.; Sonnenschein, C.; Cravedi, J-P.; Rubin, B.S.; Soto, A.M.; Zalko, D. Effects of low doses of bisphenol a on the metabolome of perinatally exposed CD-1 mice. Environ. Health Perspect., 2013, 121(5), 586-593.
[29]
Marmugi, A.; Lasserre, F.; Beuzelin, D.; Ducheix, S.; Huc, L.; Polizzi, A.; Chetivaux, M.; Pineau, T.; Martin, P.; Guillou, H.; Mselli-Lakhal, L. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology, 2014, 325, 133-143.
[30]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483.
[31]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[32]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[33]
Suzuki, Y.J.; Forman, H.J.; Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med., 1997, 22(1-2), 269-285.
[34]
Halliwell, B.; Gutteridge, J.M.C. Oxidative stress, in Free Radicals
in Biology and Medicine 3rd ed [J].,. , 1999.
[35]
Liu, H.; Zheng, F.; Cao, Q.; Ren, B.; Zhu, L.; Striker, G.; Vlassarae, H. Amelioration of oxidant stress by the defensin lysozyme. Am. J. Physiol. Endocrinol. Metab., 2006, 290(5)E824
[36]
Kajihara, T.; Uchino, S.; Suzuki, M.; Itakura, A. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil. Steril., 2011, 95(4), 1302-1307.
[37]
Fuchs, J.; Packer, L. Environmental stressors in health and disease; Marcel Dekker, 2001.
[38]
Alvarez-Gonzalez, R. Free radicals, oxidative stress, and DNA metabolism in human cancer. Cancer Invest., 1999, 17(5), 376-377.
[39]
Folkes, L.K.; Christlieb, M.; Madej, E.; Stratford, M.R.L.; Wardman, P. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem. Res. Toxicol., 2007, 20(12), 1885.
[40]
Upadhyay, D.; Panduri, V.; Ghio, A.; Kamp, D.W. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: Role of free radicals and the mitochondria. Am. J. Respir. Cell Mol. Biol., 2003, 29(2), 180-187.
[41]
Bindhumol, V.; Chitra, K.C.; Mathur, P.P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 2003, 188(2-3), 117.
[42]
Chitra, K.C.; Latchoumycandane, C.; Mathur, P.P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology, 2003, 185(1-2), 119.
[43]
Hassan, Z.K.; Elobeid, M.A.; Virk, P.; Omer, S.A.; ElAmin, M.; Daghestani, M.H.; AlOlayan, E.M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev., 2012, 2012(6), 194829
[44]
Min, K.M.; Min, J.K.; Jung, I.K.; Koo, Y.D.; Ann, H.Y.; Lee, K.J.; Kim, S.H.; Yoon, Y.C.; Cho, B.; Park, K.S.; Jang, H.C.; Park, Y.J. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level. J. Korean Med. Sci., 2012, 27(6), 644-652.
[45]
Lee, S.; Suk, K.; Kim, I.K.; Jang, I.; Park, J-W.; Johnson, V.J.; Kwon, T.K.; Choi, B-J.; Kim, S-H. Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-kappaB. J. Neurosci. Res., 2008, 86(13), 2932-2942.
[46]
Kadoma, Y.; Fujisawa, S. Kinetic evaluation of reactivity of bisphenol A derivatives as radical scavengers for methacrylate polymerization. Biomaterials, 2000, 21(21), 2125-2130.
[47]
Guimar Es, L.; Medina, M.H.; Guilhermino, L. Health status of Pomatoschistus microps populations in relation to pollution and natural stressors: Implications for ecological risk assessment. Biomarkers, 2012, 17(1), 62-77.
[48]
Yang, S.; Xu, F.; Zheng, B.; Wu, F.; Wang, S. Multibiomarker responses upon exposure to tetrabromobisphenol A in the freshwater fish Carassius auratus. Aquat. Toxicol., 2013, 142-143(4), 248-256.
[49]
Wang, X.M.; Hong, Y.; Chen, F. Experimental study on the oxidative damage by bisphenol A at middle and low doses in mice. Pract. Prev. Med., 2013, 20(3), 280-282.
[50]
Abramov, J.P.; Wells, P.G. Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. Faseb J., 2011, 25(7), 2188-2200.
[51]
Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol., 1992, 44(10), 1905.
[52]
R J H, J C J, Q Z. . Toxic effect mechanism of bisphenol A. J. Shenyang Univ. Technol, 2015, 37(6), 710-715.
[53]
Hussein, R.M.; Eid, J.I. Pathological mechanisms of liver injury caused by oral administration of bisphenol A. Life Sci. J., 2013, 10(1), 663.
[54]
Sangai, N.P.; Verma, R.J.; Trivedi, M.H. Testing the efficacy of quercetin in mitigating bisphenol A toxicity in liver and kidney of mice. Toxicol. Indust. Health, 2014, 30(7), 581-597.
[55]
Barlas, N.; Aydoğan, M. Histopathologic effects of maternal 4-tert-octylphenol exposure on liver, kidney and spleen of rats at adulthood. Arch. Toxicol., 2009, 83(4), 341-349.
[56]
Sayed-Ahmed, M.M.; Aleisa, A.M.; Al-Rejaie, S.S.; Al-Yahya, A.A.; Al-Shabanah, O.A.; Hafez, M.M.; Nagi, M.N. Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid. Med. Cell. Longev., 2010, 3(4), 254.
[57]
Lee, A.S.; Lee, S.H.; Lee, S.; Yang, B.K. Effects of Streptozotocin, Bisphenol A and Diethylstilbestrol on production of reactive oxygen species and lipid peroxidation in the boar sperm. Biomed. Sci. Lett, 2017, 23(2), 128-132.
[58]
Zhang, H.; Liu, Y.; Liu, R.; Liu, C.; Chen, Y. Molecular mechanism of lead-induced superoxide dismutase inactivation in zebrafish livers. J. Phys. Chem. B, 2014, 118(51), 14820.
[59]
Avci, B.; Bahadir, A.; Tuncel, O.K.; Bilgici, B. Influence of α-tocopherol and α-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats. Toxicol. Ind. Health, 2014, 32(8), 1381-1391.
[60]
Fang, C.; Ning, B.; Waqar, A.B.; Niimi, M.; Li, S.; Satoh, K.; Shiomi, M.; Ye, T.; Dong, S.; Fan, J. Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J. Appl. Toxicol. Jat, 2015, 35(9), 1058.
[61]
Kim, J.B.; Han, A.R.; Park, E.Y.; Kim, J-Y.; Cho, W.; Lee, J.; Seo, E-K.; Lee, K-T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull., 2007, 30(12), 2345.
[62]
Li, Y.C.; Kuan, Y.H.; Huang, F.M.; Chang, Y.C. The role of DNA damage and caspase activation in cytotoxicity and genotoxicity of macrophages induced by bisphenol-A-glycidyldimethacrylate. Int. Endodon. J., 2012, 45(6), 499-507.
[63]
Bala, A.; Mondal, C.; Haldar, P.K.; Khandelwal, B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants. Inflammopharmacology, 2017, 25(6), 1-13.
[64]
Dong, W.; Simeonova, P.P.; Gallucci, R.; Matheson, J.; Flood, L.; Wang, S.; Hubbs, A.; Luster, M.I. Toxic metals stimulate inflammatory cytokines in hepatocytes through oxidative stress mechanisms. Toxicol. Appl. Pharmacol., 1998, 151(2), 359-366.
[65]
Babbar, N.; Jr, C.R. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: A potential mechanism for inflammation-induced carcinogenesis. Cancer Res., 2006, 66(23), 11125-11130.
[66]
Streetz, K.L.; Luedde, T.; Manns, M.P.; Trautwein, C. Interleukin 6 and liver regeneration. Gut, 2000, 47(2), 309.
[67]
Dan-Ting, L.I.; Liu, L.L.; Gao, R.F. Endoplasmic reticulum stress is involved in bisphenol A-induced hepatic lipid deposition of mice. Basic Clin. Med., 2016, 36(7), 886-890.
[68]
Chan, D.C. Mitochondria: Dynamic organelles in disease, Aging, and Development. Cell, 2006, 125(7), 1241-1252.
[69]
Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol., 2007, 17(9), 422-427.
[70]
Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochon-drial membrane potential and ROS formation. Methods Mol. Biol., 2012, 810, 183.
[71]
Foster, K.A.; Galeffi, F.; Gerich, F.J.; Turner, D.A.; Müller, M. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol., 2006, 79(3), 136-171.
[72]
Simon, H.U.; Hajyehia, A.; Levischaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[73]
Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Reports., 1997, 17(1), 3-8.
[74]
Nakagawa, Y.; Tayama, S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol., 2000, 74(2), 99-105.
[75]
Williams, G.T. Programmed cell death: Apoptosis and oncogenesis. Cell, 1991, 65(7), 1097-1098.
[76]
Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1309.
[77]
Ott, M.; Gogvadze, V.; Orrenius, S. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5), 913-922.
[78]
Arai, K.; Lee, S.R.; Van, L.K.; Kurose, H. Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. J. Neurochem., 2004, 89(1), 232-239.
[79]
Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H.P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664.
[80]
Qiu, Y.L.; Li, Q.Z.; Zheng, Y.Q. Interaction between endoplasmic reticulum stress and oxidative stress. Pract. Pharm. Clin. Remed, 2016, 19(8), 1037-1041.
[81]
Asahi, J.; Kamo, H.; Baba, R.; Doi, Y.; Yamashita, A.; Murakami, D.; Hanada, A.; Hirano, T. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci., 2010, 87(13-14), 431.
[82]
Hirano, T.; Kawai, K.; Ootsuyama, Y.; Orimo, H.; Kasai, H. Detection of a mouse OGG1 fragment during caspase-dependent apoptosis: Oxidative DNA damage and apoptosis. Cancer Sci., 2004, 95(8), 634.
[83]
Simon, H.U.; Hajyehia, A.; Levischaffer, F. Role of Reactive Oxygen Species (ROS) in apoptosis induction. Apoptosis Intl. J. Program. Cell Death, 2000, 5(5), 415-418.
[84]
Izzotti, A.; Kanitz, S.; D’agostini, F.; Camoirano, A.; Flora, S. Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res., 2009, 679(1-2), 28.
[85]
Liao, C.Y.; Fu, J.J.; Shi, J.B.; Zhou, Q-F.; Yuan, C-G.; Jiang, G-B. Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. Environ. Toxicol. Pharmacol., 2006, 22(2), 225.
[86]
Chou, W.C.; Chen, J.L.; Lin, C.F.; Chen, Y-C.; Shih, F-C.; Chuang, C-Y. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health, 2011, 10(1), 94.
[87]
Verma, R.J.; Sangai, N.P. The ameliorative effect of black tea extract and quercetin on bisphenol A-induced cytotoxicity. Acta Poloniae. Pharmaceutica.,, 2009, 66(1), 41-44.
[88]
Cao, N.; Wei, H.; Wu, L.G.; Wu, T-T. Effects of bisphenol A on zebrafish (Danio rerio) liver and gonad. Chin. J. Ecol., 2010, 29(11), 2192-2198.
[89]
Boshra, V.; Moustafa, A.M. Effect of preischemic treatment with
fenofibrate, a peroxisome proliferator-activated receptor-alpha
ligand, on hepatic ischemia-reperfusion injury in rats4 (Retracted
article. See vol. 44, pg. 495, 2013). 2011.
[90]
Roy, S.; Kalita, C.J.; Mazumdar, M. Histopathlogical effects of Bisphenol A on liver of Heteropneustes Fossilis; Bloch, 2011.
[91]
Mourad, I.M.; Khadrawy, Y.A. The sensetivity of liver, kidney andtestis of rats to oxidative stress induced by different doses of bisphenol A. Life, 2012, 2(2), 19-28.
[92]
Cao, N.; Wei, H.; Wu, L.G. Effects of bisphenol A on zebrafish(Danio rerio) liver and gonad. Chin. J. Ecol., 2010, 29(11), 2192-2198.
[93]
Liang, Q.; Gao, X.; Chen, Y.; Hong, K.; Wang, H-S. Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac myocytes. Environ. Health Perspect., 2014, 122(6), 601-608.
[94]
Jun-Hua, S.U.; Zhang, G.W. Intercalation binding of bisphenol A with calf thymus DNA. Chin. J. Anal. Lab, 2015, 34(5), 497-502.
[95]
Xie, X.; Wang, X.; Xu, X.; Sun, H.; Chen, X. Investigation of the interaction between endocrine disruptor bisphenol A and human serum albumin. Chemosphere, 2010, 80(9), 1075-1080.
[96]
Zhao, L.Z.; Tian, X.Y.; Teng, H.H. Study on the interaction of bisphenol A and bovine serum albumin by spectroscopy. Liaon. Chem. Indust., 2012, 41(12), 1245-1247.
[97]
Chi, Z.; Liu, R.; Zhang, H. Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules, 2010, 11(9), 2454.
[98]
Zong, W.; Liu, R.; Feng, S.; Teng, Y. A new strategy to identify and eliminate the inner filter effects by outer filter technique. J. Fluoresc., 2011, 21(3), 1249.
[99]
Luciani, X.; Mounier, S.; Redon, R.; Bois, A. A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition. Chemomet. Intelligent Lab. Syst., 2009, 96(2), 227-238.
[100]
Weert, M.V.D.; Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. J. Mol. Struct., 2011, 998(1), 144-150.
[101]
Keswani, N.; Choudhary, S.; Kishore, N. Quantitative aspects of recognition of the antibiotic drug oxytetracycline by bovine serum albumin: Calorimetric and spectroscopic studies. J. Chem. Thermodyn., 2013, 58(3), 196-205.
[102]
Huang, J.X.; Cooper, M.A.; Baker, M.A. Mohammad, Azad, A.K.; Nation, R.L.; Li, J.; Velkov, T. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations. J. Mol. Recognit., 2012, 25(12), 642-656.
[103]
Zhang, R.; Zhao, L.; Liu, R. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods. J. Photochem. Photobiol. B Biol., 2016, 163, 40-46.
[104]
Rui, Z.; Liu, R.; Zong, W. Bisphenol s interacts with catalase and induces oxidative stress in mouse liver and renal cells. J. Agric. Food Chem., 2016, 64(34), 6630.
[105]
Carwile, J.L.; Michels, K.B. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ. Res., 2011, 111(6), 825.
[106]
Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. Jama, 2012, 308(11), 1113-1121.
[107]
Ke, Z.H.; Pan, J.X.; Jin, L.Y.; Xu, H-Y.; Yu, T-T. Kamran Ullah, Tanzil Ur Rahman, Ren, J.; Cheng, Y.; Dong, X.-Y.; Sheng, J.-Z.; Huang, H.-F. Bisphenol A exposure may induce hepatic lipid accumulation via reprogramming the dna methylation patterns of genes involved in lipid metabolism. Sci. Rep., 2016, 6, 31331.
[108]
Maina, V.; Sutti, S.; Locatelli, I.; Vidali, M.; Mombello, C.; Bozzola, C.; Albano, E. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clin. Sci., 2012, 122(11), 545.
[109]
Wan, J.; Benkdane, M.; Teixeira-Clerc, F.; Bonnafous, S.; Louvet, A.; Lafdil, F.; Pecker, F.; Tran, A.; Gual, P.; Mallat, A.; Lotersztajn, S.; Pavoine, C. M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology, 2014, 59(1), 130-142.
[110]
Li, T.; Gao, R.F.; Yang, S.M. Regulation of Atg5 on hepatic lipid deposition induced by bisphenol A. J. Chongqing Med. Univ., 2015, 3, 350-353.
[111]
Chen, L.; Hou, Y.; Du, T.X. Effects of Bisphenol A on metabolismof glucose and lipid in mice. Chin. J. Clin. Pharmacol. Therapeut, 2014, 19(3), 265-270.
[112]
Kammoun, H.L.; Chabanon, H.; Hainault, I.; Luquet, S.; Magnan, C.; Koike, T.; Ferré, P.; Foufelle, F. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Investigat., 2009, 119(5), 1201.
[113]
Lin, C.F. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health A Global Access Sci. Source, 2011, 10(1), 94.