Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Review Article

Bacterial Whole Cell Protein Profiling: Methodology, Applications and Constraints

Author(s): Neelja Singhal, Anay Kumar Maurya and Jugsharan Singh Virdi*

Volume 16, Issue 2, 2019

Page: [102 - 109] Pages: 8

DOI: 10.2174/1570164615666180905102253

Price: $65

Abstract

Background: In the era of modern microbiology, several methods are available for identification and typing of bacteria, including whole genome sequencing. However, in microbiological laboratories or hospitals where genomic based molecular typing methods and/or trained manpower are unavailable, whole cell protein profiling using sodium dodecyl sulfate polyacrylamide gel electrophoresis might be a useful alternative/supplementary method for bacterial identification, strain typing and epidemiology. Whole cell protein profiling by SDS-PAGE is based on the principle that under standard growth conditions, a bacterial strain expresses the same set of proteins, the pattern of which can be used for bacterial identification.

Objective: The objective of this review is to assess the current status of whole cell protein profiling by SDS-PAGE and its advantages and constraints for bacterial identification and typing.

Results and Conclusion: Several earlier and recent studies prove the potential and utility of this technique as an adjunct or supplementary method for bacterial identification, strain typing and epidemiology. There is no denying the fact that utility of this technique as an adjunct or supplementary method for bacterial identification and typing has already been demonstrated and its practical applications need to be evaluated further.

Keywords: Whole cell protein profiling, protein fingerprint, bacteria, identification, SDS-PAGE, typing.

Next »
Graphical Abstract

[1]
Freitas, A.L.P.D.; Barth, A.L. Antibiotic resistance and molecular typing of Pseudomonas aeruginosa: Focus on imipenem. Braz. J. Infect. Dis., 2002, 6(1), 1-6.
[2]
Sazakli, E.; Leotsinidis, M.; Vantarakis, A.; Papapetropoulou, M. Comparative typing of Pseudomonas species isolated from the aquatic environment in Greece by SDS‐PAGE and RAPD analysis. J. Appl. Microbiol., 2005, 99(5), 1191-1203.
[3]
Suardana, D.I.W.; Si, M.; Suardana, I.W. Protein profile analysis of Escherichia coli O157: H7 from human and animals origin. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(6), 204-214.
[4]
Yehia, H.M. AL-Dagal, M.M. Prevalence of Campylobacter jejuni in chicken produced by major poultry companies in Saudi Arabia. Int. J. Food Contam., 2014, 1(1), 2.
[5]
Dehghani, B.; Mottamedifar, M.; Khoshkharam-Roodmajani, H.; Hassanzadeh, A.; Zomorrodian, K.; Rahimi, A. SDS-PAGE analysis of the outer membrane proteins of uropathogenic Escherichia coli isolated from patients in different wards of Nemazee Hospital, Shiraz, Iran. Iran. J. Med. Sci., 2016, 41(5), 399-405.
[6]
Vandamme, P.; Pot, B.; Gillis, M.; De Vos, P.; Kersters, K.; Swings, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev., 1996, 60(2), 407-438.
[7]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[8]
Molloy, M.P.; Herbert, B.R.; Slade, M.B.; Rabilloud, T.; Nouwens, A.S.; Williams, K.L.; Gooley, A.A. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem., 2000, 267(10), 2871-2881.
[9]
Chen, Z.; Peng, B.; Wang, S.; Peng, X. Rapid screening of highly efficient vaccine candidates by immunoproteomics. Proteomics, 2004, 4(10), 3203-3213.
[10]
Lowry, O.H.; Rosenborough, N.J.; Farr, A.L.; Ronall, R.J. Protein measurements with Folin-phenol reagent. J. Biol. Chem., 1951, 193, 265-275.
[11]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[12]
Elgaml, A.; Hassan, R.; Barwa, R.; Shokralla, S.; El-Naggar, W. Antimicrobial susceptibility and Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) typing of Gram negative bacteria isolated from urinary tract infections in Mansoura, Egypt. J. Microbiol. Antimicrob., 2014, 6(2), 43-50.
[13]
Vauterin, L.; Vauterin, P. Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol., 1992, 1, 37-41.
[14]
Piraino, P.; Ricciardi, A.; Lanorte, M.T.; Malkhazova, I.; Parente, E. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett., 2002, 24(18), 1477-1482.
[15]
Piraino, P.; Ricciardi, A.; Salzano, G.; Zotta, T.; Parente, E. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. J. Microbiol. Methods, 2006, 66(2), 336-346.
[16]
Leisner, J.J.; Vancanneyt, M.; Rusul, G.; Pot, B.; Lefebvre, K.; Fresi, A.; Tee, L.K. Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. Int. J. Food Microbiol., 2001, 63(1), 149-157.
[17]
Temmerman, R.; Scheirlinck, I.; Huys, G.; Swings, J. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 2003, 69(1), 220-226.
[18]
Kim, T.W.; Jung, S.H.; Lee, J.Y.; Choi, S.K. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol., 2003, 13(1), 119-124.
[19]
Ghazi, F.; Henni, D.E.; Benmechernene, Z.; Kihal, M. Phenotypic and whole cell protein analysis by SDS-PAGE for identification of dominants lactic acid bacteria isolated from Algerian raw milk. World J. Dairy Food Sci., 2009, 4(1), 78-87.
[20]
Klein, G.; Pack, A.; Bonaparte, C.; Reuter, G. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol., 1998, 41(2), 103-125.
[21]
Hébert, E.M.; Raya, R.R.; de Giori, G.S. Use of SDS-PAGE of cell-wall proteins for rapid differentiation of Lactobacillus delbrueckii subsp. lactis and Lactobacillus helveticus. Biotechnol. Lett., 2000, 22(12), 1003-1006.
[22]
Kunene, N.F.; Geornaras, I.; von Holy, A.; Hastings, J.W. Characterization and determination of origin of lactic acid bacteria from a sorghum-based fermented weaning food by analysis of soluble proteins and amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol., 2000, 66(3), 1084-1092.
[23]
De Angelis, M.; Corsetti, A.; Tosti, N.; Rossi, J.; Corbo, M.R.; Gobbetti, M. Characterization of non-starter lactic acid bacteria from Italian ewe cheeses based on phenotypic, genotypic, and cell wall protein analyses. Appl. Environ. Microbiol., 2001, 67(5), 2011-2020.
[24]
Gatti, M.; Fornasari, M.E.; Neviani, E. Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis by SDS-PAGE of cell-wall proteins. Lett. Appl. Microbiol., 2001, 32, 352-356.
[25]
Corsetti, A.; De Angelis, M.; Dellaglio, F.; Paparella, A.; Fox, P.F.; Settanni, L.; Gobbetti, M. Characterization of sourdough lactic acid bacteria based on genotypic and cell‐wall protein analyses. J. Appl. Microbiol., 2003, 94(4), 641-654.
[26]
Dalgaard, P.; Vancanneyt, M.; Euras Vilalta, N.; Swings, J.; Fruekilde, P.; Leisner, J.J. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C. J. Appl. Microbiol., 2003, 94(1), 80-89.
[27]
Toit, M.D.; Dicks, L.M.T.; Holzapfel, W.H. Identification of heterofermentative lactobacilli isolated from pig faeces by numerical analysis of total soluble cell protein patterns and RAPD‐PCR. Lett. Appl. Microbiol., 2003, 37(1), 12-16.
[28]
Sánchez, I.; Seseña, S.; Palop, L. Identification of lactic acid bacteria from spontaneous fermentation of ‘Almagro’ eggplants by SDS-PAGE whole cell protein fingerprinting. Int. J. Food Microbiol., 2003, 82(2), 181-189.
[29]
Laursen, B.G.; Bay, L.; Cleenwerck, I.; Vancanneyt, M.; Swings, J.; Dalgaard, P.; Leisner, J.J. Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: Phenotypic and genotypic characterization. Syst. Appl. Microbiol., 2005, 28(2), 151-164.
[30]
Gancheva, A.; Pot, B.; Vanhonacker, K.; Hoste, B.; Kersters, K. A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst. Appl. Microbiol., 1999, 22(4), 573-585.
[31]
Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol., 2001, 67(8), 3450-3454.
[32]
Ucan, U.S.; Açik, L.; Çelebi, A.; Erganis, O.; Arslan, E. Plasmids and protein patterns of Escherichia coli isolated from bovine mastitis in Konya, Turkey. Turk. J. Vet. Anim. Sci., 2005, 29(2), 475-480.
[33]
Yoon, L.C.; Hong, Y.; Ryu, J.; Kim, Y.R.; Oh, S.S.; Lee, S.H.; Hwang, I.G.; Kim, H.Y. Detection and identification of Vibrio species using whole-cell protein pattern analysis. J. Microbiol. Biotechnol., 2012, 22(8), 1107-1112.
[34]
Sarkono, S.; Moeljopawiro, S.; Setiaji, B.; Sembiring, L. Analysis of whole cell protein profiles by SDS-PAGE to identify indigenous cellulose-producer acetic acid bacteria. I. J. Biotechnol., 2016, 21(2), 86-92.
[35]
Pot, B.; Vandamme, P.; Kersters, K. Analysis of electrophoretic whole organism protein fingerprints.InChemical methods in prokaryotic systematics.Eds. M. Goodfellow and A.G O'Donnell; John Wiley & Sons: Chichester, UK, 1994, pp. 493-521. b
[36]
Diker, K.S.; Esendal, O.M.; Akan, M. Epidemiology of ovine Campylobacter infection determined by numerical analysis of electrophoretic protein profiles. J. Vet. Med. B Infect. Dis. Vet. Public Health, 2000, 47(10), 739-744.
[37]
Giacoboni, G.I.; Echeverría, M.G.; Perfumo, C.J. Campylobacter jejuni and C. coli in aborted swine: Comparison between phenotypic identification and polyacrylamide gel protein profiles. Rev. Argent. Microbiol., 2002, 34(4), 199-204.
[38]
Duim, B.; Wagenaar, J.A.; Dijkstra, J.R.; Goris, J.; Endtz, H.P.; Vandamme, P.A. Identification of distinct Campylobacter lari genogroups by amplified fragment length polymorphism and protein electrophoretic profiles. Appl. Environ. Microbiol., 2004, 70(1), 18-24.
[39]
Lanoot, B.; Vancanneyt, M.; Cleenwerck, I.; Wang, L.; Li, W.; Liu, Z.; Swings, J. The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int. J. Syst. Evol. Microbiol., 2002, 52(3), 823-829.
[40]
Liang, Z.; Raoult, D. Differentiation of Bartonella species by a microimmunofluorescence assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western immunoblotting. Clin. Diagn. Lab. Immunol., 2000, 7(4), 617-624.
[41]
Mallik, S.; Virdi, J.S. Whole cell protein profiling reiterate phylogenetic relationships among strains of Yersinia enterocolitica biovar 1A as discerned earlier by different genotyping methods. J. Appl. Microbiol., 2010, 109(3), 946-952.
[42]
Shida, O.; Takagi, H.; Kadowaki, K.; Yano, H.; Komagata, K. Differentiation of species in the Bacillus brevis group and the Bacillus aneurinolyticus group based on the electrophoretic whole-cell protein pattern. Antonie van Leeuwenhoek, 1996, 70(1), 31-39.
[43]
Berber, I. Characterization of Bacillus species by numerical analysis of their SDS-PAGE protein profiles. J. Cell Mol. Biol., 2004, 3, 33-37.
[44]
Costas, M.; Holmes, B.; Sloss, L.L. Comparison of SDS-PAGE protein patterns with other typing methods for investigating the epidemiology of ‘Klebsiella aerogenes’. Epidemiol. Infect., 1990, 104(3), 455-465.
[45]
Bruce, K.D.; Pennington, T.H. Clonal analysis of non-typable Haemophilus influenzae by sodium dodecyl sulphate-polyacrylamide gel electrophoresis of whole cell polypeptides. J. Med. Microbiol., 1991, 34(5), 277-283.
[46]
Vaneechoutte, M.; Elaichouni, A.; Maquelin, K.; Claeys, G.; Van Liedekerke, A.; Louagie, H.; Verschraegen, G.; Dijkshoorn, L. Comparison of arbitrarily primed polymerase chain reaction and cell envelope protein electrophoresis for analysis of Acinetobacter baumannii and A. junii outbreaks. Res. Microbiol., 1995, 146(6), 457-465.
[47]
Dijkshoorn, L.; Aucken, H.; Gerner-Smidt, P.; Janssen, P.; Kaufmann, M.E.; Garaizar, J.; Ursing, J.; Pitt, T.L. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J. Clin. Microbiol., 1996, 34(6), 1519-1525.
[48]
Geary, C.; Jordens, J.Z.; Richardson, J.F.; Hawcroft, D.M.; Mitchell, C.J. Epidemiological typing of coagulase-negative staphylococci from nosocomial infections. J. Med. Microbiol., 1997, 46(3), 195-203.
[49]
Scheldeman, P.; Rodríguez-Díaz, M.; Goris, J.; Pil, A.; De Clerck, E.; Herman, L.; De Vos, P.; Logan, N.A.; Heyndrickx, M. Bacillus farraginis sp. nov., Bacillus fortis sp. nov. and Bacillus fordii sp. nov., isolated at dairy farms. Int. J. Syst. Evol. Microbiol., 2004, 54(4), 1355-1364.
[50]
Konecka, E.; Kaznowski, A.; Ziemnicka, J.; Ziemnicki, K. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. J. Invertebr. Pathol., 2007, 94(1), 56-63.
[51]
Esteban, J.; Molleja, A.; Cabria, F.; Soledad Jimenez, M. SDS‐PAGE for identification of species belonging to the Mycobacterium fortuitum complex. Clin. Microbiol. Infect., 2003, 9(4), 327-331.
[52]
Pourahmad, F.; Nemati, M. Identification of fish isolated mycobacteria using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Eur. J. Exp. Biol., 2013, 3(3), 287-290.
[53]
Smith, S.; Ganiyu, O.; John, R.; Fowora, M.; Akinsinde, K.; Odeigah, P. Antimicrobial resistance and molecular typing of Pseudomonas aeruginosa isolated from surgical wounds in Lagos, Nigeria. Acta Med. Iran., 2012, 50(6), 433-438.
[54]
Arshi, S.; Bashir, D.; Manzoor, T.; Rashid, A.; Khurshid, S.; Lone, R.; Shafiq, S. Whole cell protein profiles of Pseudomonas aeruginosa strains isolated at sher-i-Kashmir institute of medical sciences, Srinagar J & K (SKIMS). JK Pract., 2012, 17(1-3), 39-43.
[55]
Mahendrakumar, M.; Sheriff, M.A. Whole cell protein profiling of human pathogenic bacteria isolated from clinical samples. Asian J. Sci. Res., 2015, 8(3), 374-380.
[56]
Baga, I.; Jaya, A.A. Streptococcus agalactiae whole cell bacteria toxin protein in Nile tilapia Oreochromis niloticus. AACL Bioflux, 2018, 11(2), 460-468.
[57]
Sarkar, A.; Saha, M.; Patra, A.; Roy, P. Characterization of Aeromonas hydrophila through RAPD-PCR and SDS-PAGE analysis. Open J. Med. Microbiol., 2012, 2(02), 37-40.
[58]
Aksakal, A. Analysis of whole cell protein profiles of Salmonella serovars isolated from chicken, turkey and sheep faeces by SDS-PAGE. Vet. Med., 2010, 55(6), 259-263.
[59]
Yahya, M.F.Z.R.; Alias, Z.; Karsani, S.A. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. Protein J., 2017, 36(4), 286-298.
[60]
Ehlers, M.M.; Cloete, T.E. Comparing the protein profiles of 21 different activated sludge systems after SDS-PAGE. Water Res., 1999, 33(5), 1181-1186.
[61]
Vauterin, L.; Swings, J.; Kersters, K.; Gillis, M.; Mew, T.W.; Schroth, M.N.; Palleroni, N.J.; Hildebrand, D.C.; Stead, D.E.; Civerolo, E.L.; Hayward, A.C.; Maraîte, H.; Stall, R.E.; Vidaver, A.K.; Bradbury, J.F. Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Bacteriol., 1990, 40(3), 312-316.
[62]
Hertel, C.; Ludwig, W.; Pot, B.; Kersters, K.; Schleifer, K.H. Differentiation of lactobacilli occurring in fermented milk products by using oligonucleotide probes and electrophoretic protein profiles. Syst. Appl. Microbiol., 1993, 16(3), 463-467.
[63]
Pot, B.; Hertel, C.; Ludwig, W.; Descheemaeker, P.; Kersters, K.; Schleifer, K.H. Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization. Microbiology, 1993, 139(3), 513-517.
[64]
Funke, G.; Pagano-Niederer, M.; Sjödén, B.; Falsen, E. Characteristics of Arthrobacter cumminsii, the most frequently encountered Arthrobacter species in human clinical specimens. J. Clin. Microbiol., 1998, 36(6), 1539-1543.
[65]
Körkoca, H.; Boynukara, B. The characterization of protein profiles of the Aeromonas hydrophila and A. caviae strains isolated from gull and rainbow trout feces by SDS-PAGE. Turk. J. Vet. Anim. Sci., 2003, 27(5), 1173-1177.
[66]
Collins, M.D.; Hoyles, L.; Kalfas, S.; Sundquist, G.; Monsen, T.; Nikolaitchouk, N.; Falsen, E. Characterization of actinomyces isolates from infected root canals of teeth: Description of Actinomyces radicidentis sp. nov. J. Clin. Microbiol., 2000, 38(9), 3399-3403.
[67]
Dijkshoorn, L.; Wubbels, J.L.; Beunders, A.J.; Degener, J.E.; Boks, A.L.; Michel, M.F. Use of protein profiles to identify Acinetobacter calcoaceticus in a respiratory care unit. J. Clin. Pathol., 1989, 42(8), 853-857.
[68]
Dijkshoorn, L.; Aucken, H.M.; Gerner-Smidt, P.; Kaufmann, M.E.; Ursing, J.; Pitt, T.L. Correlation of typing methods for Acinetobacter isolates from hospital outbreaks. J. Clin. Microbiol., 1993, 31(3), 702-705.
[69]
Weernink, A.; Severin, W.P.J.; Tjernberg, I.; Dijkshoorn, L. Pillows, an unexpected source of Acinetobacter. J. Hosp. Infect., 1995, 29(3), 189-199.
[70]
Hoyles, L.; Inganäs, E.; Falsen, E.; Drancourt, M.; Weiss, N.; McCartney, A.L.; Collins, M.D. Bifidobacterium scardovii sp. nov., from human sources. Int. J. Syst. Evol. Microbiol., 2002, 52(3), 995-999.
[71]
Masco, L.; Ventura, M.; Zink, R.; Huys, G.; Swings, J. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: Reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int. J. Syst. Evol. Microbiol., 2004, 54(4), 1137-1143.
[72]
Domingues, R.M.C.P.; Avelar, K.E.S.; Souza, W.G.S.; Moraes, S.R.; Antunes, E.N.F.; Oliveira, I.A.; Ferreira, M.C. Whole-cell and periplasmic protein banding patterns of environmental and human Bacteroides fragilis strains. Zentralbl. Bakteriol., 1997, 286(3), 305-315.
[73]
Hudspeth, M.K.; Gerardo, S.H.; Maiden, M.F.J.; Citron, D.M.; Goldstein, E.J.C. Characterization of Bacteroides forsythus strains from cat and dog bite wounds in humans and comparison with monkey and human oral strains. J. Clin. Microbiol., 1999, 37(6), 2003-2006.
[74]
Sylla, S.N.; Samba, R.T.; Neyra, M.; Ndoye, I.; Giraud, E.; Willems, A.; de Lajudie, P.; Dreyfus, B. Phenotypic and genotypic diversity of rhizobia nodulating Pterocarpus erinaceus and P. lucens in Senegal. Syst. Appl. Microbiol., 2002, 25(4), 572-583.
[75]
Pot, B.; Ludwig, W.; Kersters, K.; Schleifer, K.H. Taxonomy of lactic acid bacteria.In: Bacteriocins of Lactic Acid Bacteria; Vuyst, L.D.; Vandamme, E.J., Eds.; Springer, US, 1994, pp. 13-90.
[76]
Costas, M.; Holmes, B.; Ganner, M.; On, S.L.W.; Hoffman, P.N.; Worsley, M.A.; Panigrahi, H. Identification of outbreak-associated and other strains of Clostridium difficile by numerical analysis of SDS-PAGE protein patterns. Epidemiol. Infect., 1994, 113(1), 1-12.
[77]
Ogunsola, F.T.; Ryley, H.C.; Duerden, B.I. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of EDTA-extracted cell-surface protein antigens is a simple and reproducible method for typing Clostridium difficile. Clin. Infect. Dis., 1995, S327-S330.
[78]
Bernáth, S.; Morovján, G. Computerized evaluation procedure for comparing the electrophoretic protein patterns of bacterial strains. Lett. Appl. Microbiol., 1998, 27(4), 235-238.
[79]
Bernath, S.; Nemet, L.; Toth, K.; Morovjan, G. Computerized comparison of the protein compositions of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum strains. J. Vet. Med. B Infect. Dis. Vet. Public Health, 2001, 48(1), 73-79.
[80]
Descheemaeker, P.; Lammens, C.; Pot, B.; Vandamme, P.; Goossens, H. Evaluation of arbitrarily primed PCR analysis and pulsed-field gel electrophoresis of large genomic DNA fragments for identification of enterococci important in human medicine. Int. J. Syst. Bacteriol., 1997, 47(2), 555-561.
[81]
Koort, J.; Coenye, T.; Vandamme, P.; Sukura, A.; Björkroth, J. Enterococcus hermanniensis sp. nov., from modified-atmosphere-packaged broiler meat and canine tonsils. Int. J. Syst. Evol. Microbiol., 2004, 54(5), 1823-1827.
[82]
Eaton, K.A.; Dewhirst, F.E.; Radin, M.J.; Fox, J.G.; Paster, B.J.; Krakowka, S.; Morgan, D.R. Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int. J. Syst. Bacteriol., 1993, 43(1), 99-106.
[83]
Jalava, K.; On, S.L.; Vandamme, P.A.; Happonen, I.; Sukura, A.; Hänninen, M.L. Isolation and identification of Helicobacter spp. from canine and feline gastric mucosa. Appl. Environ. Microbiol., 1998, 64(10), 3998-4006.
[84]
Oliveira, S.; Pijoan, C. Computer-based analysis of Haemophilus parasuis protein fingerprints. Can. J. Vet. Res., 2004, 68(1), 71-75.
[85]
Malik, A.; Hasani, S.E.; Shahid, M.; Khan, H.M.; Ahmad, A.J. Nosocomial Klebsiella infection in neonates in a tertiary care hospital: Protein profile by SDS-page and klebocin typing as epidemiological markers. Indian J. Med. Microbiol., 2003, 21(2), 82-86.
[86]
Giacomini, M.; Ruggiero, C.; Bertone, S.and; Calegari, L. Artificial neural network identification of heterotrophic marine bacteria based on their fatty-acid composition. IEEE Trans. Biomed. Eng., 1997, 44(12), 1185-1191.
[87]
Jin, L.; Tao, L.; Pavlova, S.I.; So, J.S.; Kiwanuka, N.; Namukwaya, Z.; Saberbein, B.A.; Wawer, M. Species diversity and relative abundance of vaginal lactic acid bacteria from women in Uganda and Korea. J. Appl. Microbiol., 2007, 102(4), 1107-1115.
[88]
Dhanashree, B.; Otta, S.K.; Karunasagar, I.; Karunasagar, I. Protein profile analysis of Listeria monocytogenes strains from the tropics. Curr. Sci., 2003, 84(5), 628-630.
[89]
Park, Y.S.; Lee, S.R.; Kim, Y.G. Detection of Escherichia coli O157: H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in kimchi by multiplex polymerase chain reaction (mPCR). J. Microbiol., 2006, 44(1), 92-97.
[90]
Eribe, E.R.K.; Olsen, I. SDS-PAGE of whole-cell proteins and Random Amplified Polymorphic DNA (RAPD) analyses of Leptotrichia isolates. Microb. Ecol. Health Dis., 2002, 14(4), 193-203.
[91]
Verissimo, A.; Morais, P.V.; Diogo, A.; Gomes, C.; Da Costa, M.S. Characterization of Legionella species by numerical analysis of whole-cell protein electrophoresis. Int. J. Syst. Bacteriol., 1996, 46(1), 41-49.
[92]
De Jong, A.; Hoentjen, A.H.; Van Der Zanden, A.G.M. A rapid method for identification of Mycobacterium species by polyacrylamide gel electrophoresis of soluble cell proteins. J. Med. Microbiol., 1991, 34(1), 1-5.
[93]
Diker, K.S.; Akan, M.; Kaya, O. Serotypes and electrophoretic protein profiles of Pasteurella haemolytica isolated from pneumonic ovine lungs. Dtsch. Tierarztl. Wochenschr., 1999, 106(5), 207-209.
[94]
Tryfinopoulou, P.; Tsakalidou, E.; Nychas, G.J. Characterization of Pseudomonas spp. associated with spoilage of gilt-head sea bream stored under various conditions. Appl. Environ. Microbiol., 2002, 68(1), 65-72.
[95]
Diouf, A.; de Lajudie, P.; Neyra, M.; Kersters, K.; Gillis, M.; Martinez-Romero, E.; Gueye, M. Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int. J. Syst. Evol. Microbiol., 2000, 50(1), 159-170.
[96]
Clink, J.; Pennington, T.H. Staphylococcal whole-cell polypeptide analysis: Evaluation as a taxonomic and typing tool. J. Med. Microbiol., 1987, 23(1), 41-44.
[97]
Costas, M.; Cookson, B.D.; Talsania, H.G.; Owen, R.J. Numerical analysis of electrophoretic protein patterns of methicillin-resistant strains of Staphylococcus aureus. J. Clin. Microbiol., 1989, 27(11), 2574-2581.
[98]
Berber, I.; Cokmus, C.; Atalan, E. Characterization of Staphylococcus species by SDS-PAGE of whole-cell and extracellular proteins. Microbiology, 2003, 72(1), 42-47.
[99]
Vogel, B.F.; Jørgensen, K.; Christensen, H.; Olsen, J.E.; Gram, L. Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl. Environ. Microbiol., 1997, 63(6), 2189-2199.
[100]
Vogel, B.F.; Holt, H.M.; Gerner-Smidt, P.; Bundvad, A.; Søgaard, P.; Gram, L. Homogeneity of Danish environmental and clinical isolates of Shewanella algae. Appl. Environ. Microbiol., 2000, 66(1), 443-448.
[101]
Devriese, L.A.; Vandamme, P.; Pot, B.; Vanrobaeys, M.; Kersters, K.; Haesebrouck, F. Differentiation between Streptococcus gallolyticus strains of human clinical and veterinary origins and Streptococcus bovis strains from the intestinal tracts of ruminants. J. Clin. Microbiol., 1998, 36(12), 3520-3523.
[102]
Vandamme, P.; Torck, U.; Falsen, E.; Pot, B.; Goossens, H.; Kersters, K. Whole-cell protein electrophoretic analysis of Viridans streptococci: Evidence for heterogeneity among Streptococcus mitis biovars. Int. J. Syst. Bacteriol., 1998, 48(1), 117-125.
[103]
Anderson, A.S.; Wellington, E.M. The taxonomy of Streptomyces and related genera. Int. J. Syst. Evol. Microbiol., 2001, 51(3), 797-814.
[104]
Holmes, B.; Costas, M.; Sloss, L.L. Numerical analysis of SDS-PAGE protein patterns of Serratia marcescens: A comparison with other typing methods. Epidemiol. Infect., 1990, 105(1), 107-117.
[105]
Khan, I.A.; Rattan, A.; Fatima, T.; Khan, F.G.; Kalia, A. Application of whole cell protein analysis by SDS-PAGE to establish the source of Salmonella typhimurium. J. Infect., 1996, 33(3), 169-171.
[106]
Sood, A.; Kaur, I.R. Electrophoretic analysis of Salmonella typhi and other bacteria. Indian J. Med. Sci., 2002, 56(6), 265-269.
[107]
Montilla, R.; Viñas, M.; Palomar, J.; Fusté, M.C. Taxonomy and protein fingerprinting of halophilic Vibrio isolates from bivalves of the Ebre delta. Can. J. Microbiol., 1995, 41(1), 64-69.
[108]
George, M.R.; John, K.R.; Iyappan, T.; Jeyaseelan, M.J.P. Genetic heterogeneity among Vibrio alginolyticus isolated from shrimp farms by PCR fingerprinting. Lett. Appl. Microbiol., 2005, 40(5), 369-372.
[109]
Chart, H.; Cheasty, T.; Rowe, B. Differentiation of Yersinia pestis and Y. pseudotuberculosis by SDS‐PAGE analysis of lipopolysaccharide. Lett. Appl. Microbiol., 1995, 20(6), 369-370.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy