Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Cytotoxicity of Palladium Nanoparticles Against Aspergillus Niger

Author(s): Sekar Kumaran, Hani Nasser Abdelhamid, Nazim Hasan and Hui-Fen Wu*

Volume 10, Issue 1, 2020

Page: [80 - 85] Pages: 6

DOI: 10.2174/2210681208666180904113754

Price: $65

Abstract

Background: Investigating the bioactivity of nanoscale materials against microorganisms give a comprehensive, proactive understanding of nanomaterial toxicity and explore their potential for applications.

Methods: The aim of this study is to assess the changes in the mycelium growth and proteomics for filamentous fungi Aspergillus niger (A. niger) caused by palladium nanoparticles (Pd NPs). In this study, quantitative analysis of the mycelium growth and protein content of A. niger upon incubation with different concentrations of Pd NPs (0-1350 ng/mL) were reported. Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry (MALDI-MS) was also used to analyze the changes of the proteins content of A. niger in different medium using two different matrices; α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). We found that Pd NPs decrease the mycelium growth of A. niger.

Results: The protein contents are increased at low concentrations of Pd NPs, while it decreases with high concentration. MALDI-MS results show change of the protein contents for A. niger upon incubation with Pd NPs. Mycelia biomass decreases at high concentration of Pd NPs.

Conclusion: The biological activity of Pd NPs depends on their concentration and cell culture medium. These new findings may add valuable information about the cytotoxicity of Pd NPs.

Keywords: Palladium nanoparticles, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), Aspergillus niger, mycelium growth, protein contents, sinapinic acid.

Graphical Abstract

[1]
Chankeshwara, S.V.; Indrigo, E.; Bradley, M. Palladium-mediated chemistry in living cells. Curr. Opin. Chem. Biol., 2014, 21, 128-135.
[2]
Weiss, J.T.; Dawson, J.C.; Macleod, K.G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E.E.; Bradley, M.; Carragher, N.O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun., 2014, 5, 3277.
[3]
de Paula, F.C.S.; Guerra, W.; Silva, I.R.; Silveira, J.N.; Botelho, F.V.; Vieira, L.Q.; Pereira-Maia, E.C. Cytotoxicity and cellular accumulation of palladium(II) complexes of tetracyclines. Chem. Biodivers., 2008, 5, 2124-2130.
[4]
Klinkova, A.; De Luna, P.; Sargent, E.H.; Kumacheva, E.; Cherepanov, P.V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A, 2017, 5, 11582-11585.
[5]
Chen, V.; Pan, H.; Jacobs, R.; Derakhshan, S.; Shon, Y-S. Influence of graphene oxide supports on solution-phase catalysis of thiolate-protected palladium nanoparticles in water. New J. Chem., 2017, 41, 177-183.
[6]
Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci., 2015, 6, 2153-2157.
[7]
Balbín, A.; Gaballo, F.; Ceballos-Torres, J.; Prashar, S.; Fajardo, M.; Kaluđerović, G.N.; Gómez-Ruiz, S. Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: supported catalysts for C–C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Advances, 2014, 4, 54775-54787.
[8]
Li, Y.; Wang, H.; Zhang, R.; Zhang, G.; Yang, Y.; Liu, Z. Biofabrication of polyphenols coated nano-palladium and its in-vitro cytotoxicity against human leukemia cell lines (K562). J. Photochem. Photobiol. B Biol, 2017, 175, 173-177.
[9]
Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size-Dependent antimicrobial effects of novel palladium nanoparticles. PLoS One, 2014, 9e85981
[10]
Dinesh, M.; Roopan, S.M.; Selvaraj, C.I.; Arunachalam, P. Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, heamolytic and cytotoxic studies. J. Photochem. Photobiol. B Biol, 2017, 167, 64-71.
[11]
Haleem Khan, A.A.; Karuppayil, M.S. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci., 2012, 19, 405-426.
[12]
Adeoye, A.O.; Lateef, A.; Gueguim-Kana, E.B. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol., 2015, 4, 568-574.
[13]
Roukas, T. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J. Ind. Microbiol. Biotechnol., 2000, 25, 298-304.
[14]
Kang, S. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol., 2004, 91, 153-156.
[15]
De Baetselier, A.; Vasavada, A.; Dohet, P.; Ha-Thi, V.; De Beukelaer, M.; Erpicum, T.; De Clerck, L.; Hanotier, J.; Rosenberg, S. Fermentation of a yeast producing A. niger glucose oxidase: Scale-up, purification and characterization of the recombinant enzyme. Nat. Biotechnol., 1991, 9, 559-561.
[16]
Record, E.; Asther, M.; Sigoillot, C.; Pagès, S.; Punt, P.J.; Delattre, M.; Haon, M.; van den Hondel, C.A.M.J.J.; Sigoillot, J-C.; Lesage-Meessen, L.; Asther, M. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl. Microbiol. Biotechnol., 2003, 62, 349-355.
[17]
Betini, J.H.A.; Michelin, M.; Peixoto-Nogueira, S.C.; Jorge, J.A.; Terenzi, H.F.; Polizeli, M.L.T.M. Xylanases from A. niger, A. niveus and A. ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng., 2009, 32, 819-824.
[18]
Castilho, L.R.; Medronho, R.A.; Alves, T.L. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with A. niger. Bioresour. Technol., 2000, 71, 45-50.
[19]
Amini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A.A.Z.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by A. niger. J. Hazard. Mater., 2008, 154, 694-702.
[20]
Levetin, E.; Horner, W.E.; Scott, J.A.; Barnes, C.; Baxi, S.; Chew, G.L.; Grimes, C.; Horner, W.E.; Kennedy, K.; Larenas-Linnemann, D.; Levetin, E.; Miller, J.D.; Phipatanakul, W.; Portnoy, J.M.; Scott, J.A.; Williams, P.B. Taxonomy of Allergenic Fungi. J. Allergy Clin. Immunol. Pract., 2016, 4, 375-385.
[21]
Abdelhamid, H.N. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim. Acta, 2018, 185, 200.
[22]
Rzagalinski, I.; Volmer, D.A. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. Biochim. Biophys. Acta, 2017, 1865, 726-739.
[23]
Baker, T.C.; Han, J.; Borchers, C.H. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr. Opin. Biotechnol., 2017, 43, 62-69.
[24]
Abdelhamid, H.N.; Lin, Y.C.; Wu, H.F. Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Mikrochim. Acta, 2017, 184, 1517-1527.
[25]
Abdelhamid, H.N.; Lin, Y.C.; Wu, H-F. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Advances, 2017, 7, 41585-41592.
[26]
Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Quantum dot applications endowing novelty to analytical proteomics. Proteomics, 2012, 12, 2949-2961.
[27]
Abdelhamid, H.N.; Bhaisare, M.L.; Wu, H-F. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta, 2014, 120, 208-217.
[28]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68, 6652-6660.
[29]
Hua, P-Y.; Manikandan, M.; Abdelhamid, H.N.; Wu, H-F. Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J. Mater. Chem. B., 2014, 2, 7334-7343.
[30]
Abdelhamid, H.N.; Chen, Z-Y.; Wu, H-F. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal. Bioanal. Chem., 2017, 409, 4943-4950.
[31]
Abdelhamid, H.N.; Talib, A.; Wu, H.F. One pot synthesis of gold - carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta, 2017, 166, 357-363.
[32]
Sauer, S.; Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol., 2010, 8, 74-82.
[33]
Sandrin, T.R.; Goldstein, J.E.; Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: A review. Mass Spectrom. Rev., 2013, 32, 188-217.
[34]
Šedo, O.; Sedláček, I.; Zdráhal, Z. Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom. Rev., 2011, 30, 417-434.
[35]
Lay, J.O. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev., 2001, 20, 172-194.
[36]
Cheng, K.; Chui, H.; Domish, L.; Hernandez, D.; Wang, G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics, 2016, 10, 346-357.
[37]
van Belkum, A.; Chatellier, S.; Girard, V.; Pincus, D.; Deol, P.; Dunne, W.M. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev. Proteomics, 2015, 12, 595-605.
[38]
Arnold, R.J.; Karty, J.A.; Ellington, A.D.; Reilly, J.P. Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal. Chem., 1999, 71, 1990-1996.
[39]
Abdelhamid, H.N.; Wu, H-F. Monitoring metallofulfenamic-bovine serum albumin interactions: A novel method for metallodrug analysis. RSC Advances, 2014, 4, 53768-53776.
[40]
Gedda, G.; Abdelhamid, H.N.; Khan, M.S.; Wu, H-F. ZnO nanoparticle-modified polymethyl methacrylate-assisted dispersive liquid–liquid microextraction coupled with MALDI-MS for rapid pathogenic bacteria analysis. RSC Advances, 2014, 4, 45973-45983.
[41]
Abdelhamid, H.N. Laser assisted synthesis, imaging and cancer therapy of magnetic nanoparticles. Mater. Focus, 2016, 5, 305-323.
[42]
Shahnawaz Khan, M.; Abdelhamid, H.N.; Wu, H-F. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf. B Biointerfaces, 2015, 127C, 281-291.
[43]
Wu, B-S.; Abdelhamid, H.N.; Wu, H-F. Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Advances, 2014, 4, 3722.
[44]
Kumaran, S.; Abdelhamid, H.N.; Wu, H-F. Quantification analysis of protein and mycelium contents upon inhibition of melanin for: Aspergillus niger: A study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Advances, 2017, 7, 30289-30294.
[45]
Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core−shell microgels. Chem. Mater., 2007, 19, 1062-1069.
[46]
Wu, F.; Yao, N. In-situ synthesis and defect evolution of single-crystal piezoelectric nanoparticles. Nano Energy, 2016, 28, 195-205.
[47]
Larese Filon, F.; Crosera, M.; Mauro, M.; Baracchini, E.; Bovenzi, M.; Montini, T.; Fornasiero, P.; Adami, G. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin. Environ. Pollut., 2016, 214, 497-503.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy