[1]
Chankeshwara, S.V.; Indrigo, E.; Bradley, M. Palladium-mediated chemistry in living cells. Curr. Opin. Chem. Biol., 2014, 21, 128-135.
[2]
Weiss, J.T.; Dawson, J.C.; Macleod, K.G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E.E.; Bradley, M.; Carragher, N.O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun., 2014, 5, 3277.
[3]
de Paula, F.C.S.; Guerra, W.; Silva, I.R.; Silveira, J.N.; Botelho, F.V.; Vieira, L.Q.; Pereira-Maia, E.C. Cytotoxicity and cellular accumulation of palladium(II) complexes of tetracyclines. Chem. Biodivers., 2008, 5, 2124-2130.
[4]
Klinkova, A.; De Luna, P.; Sargent, E.H.; Kumacheva, E.; Cherepanov, P.V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A, 2017, 5, 11582-11585.
[5]
Chen, V.; Pan, H.; Jacobs, R.; Derakhshan, S.; Shon, Y-S. Influence of graphene oxide supports on solution-phase catalysis of thiolate-protected palladium nanoparticles in water. New J. Chem., 2017, 41, 177-183.
[6]
Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci., 2015, 6, 2153-2157.
[7]
Balbín, A.; Gaballo, F.; Ceballos-Torres, J.; Prashar, S.; Fajardo, M.; Kaluđerović, G.N.; Gómez-Ruiz, S. Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: supported catalysts for C–C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Advances, 2014, 4, 54775-54787.
[8]
Li, Y.; Wang, H.; Zhang, R.; Zhang, G.; Yang, Y.; Liu, Z. Biofabrication of polyphenols coated nano-palladium and its in-vitro cytotoxicity against human leukemia cell lines (K562). J. Photochem. Photobiol. B Biol, 2017, 175, 173-177.
[9]
Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size-Dependent antimicrobial effects of novel palladium nanoparticles. PLoS One, 2014, 9e85981
[10]
Dinesh, M.; Roopan, S.M.; Selvaraj, C.I.; Arunachalam, P. Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, heamolytic and cytotoxic studies. J. Photochem. Photobiol. B Biol, 2017, 167, 64-71.
[11]
Haleem Khan, A.A.; Karuppayil, M.S. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci., 2012, 19, 405-426.
[12]
Adeoye, A.O.; Lateef, A.; Gueguim-Kana, E.B. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol., 2015, 4, 568-574.
[13]
Roukas, T. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J. Ind. Microbiol. Biotechnol., 2000, 25, 298-304.
[14]
Kang, S. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol., 2004, 91, 153-156.
[15]
De Baetselier, A.; Vasavada, A.; Dohet, P.; Ha-Thi, V.; De Beukelaer, M.; Erpicum, T.; De Clerck, L.; Hanotier, J.; Rosenberg, S. Fermentation of a yeast producing A. niger glucose oxidase: Scale-up, purification and characterization of the recombinant enzyme. Nat. Biotechnol., 1991, 9, 559-561.
[16]
Record, E.; Asther, M.; Sigoillot, C.; Pagès, S.; Punt, P.J.; Delattre, M.; Haon, M.; van den Hondel, C.A.M.J.J.; Sigoillot, J-C.; Lesage-Meessen, L.; Asther, M. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl. Microbiol. Biotechnol., 2003, 62, 349-355.
[17]
Betini, J.H.A.; Michelin, M.; Peixoto-Nogueira, S.C.; Jorge, J.A.; Terenzi, H.F.; Polizeli, M.L.T.M. Xylanases from A. niger, A. niveus and A. ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng., 2009, 32, 819-824.
[18]
Castilho, L.R.; Medronho, R.A.; Alves, T.L. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with A. niger. Bioresour. Technol., 2000, 71, 45-50.
[19]
Amini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A.A.Z.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by A. niger. J. Hazard. Mater., 2008, 154, 694-702.
[20]
Levetin, E.; Horner, W.E.; Scott, J.A.; Barnes, C.; Baxi, S.; Chew, G.L.; Grimes, C.; Horner, W.E.; Kennedy, K.; Larenas-Linnemann, D.; Levetin, E.; Miller, J.D.; Phipatanakul, W.; Portnoy, J.M.; Scott, J.A.; Williams, P.B. Taxonomy of Allergenic Fungi. J. Allergy Clin. Immunol. Pract., 2016, 4, 375-385.
[21]
Abdelhamid, H.N. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim. Acta, 2018, 185, 200.
[22]
Rzagalinski, I.; Volmer, D.A. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. Biochim. Biophys. Acta, 2017, 1865, 726-739.
[23]
Baker, T.C.; Han, J.; Borchers, C.H. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr. Opin. Biotechnol., 2017, 43, 62-69.
[24]
Abdelhamid, H.N.; Lin, Y.C.; Wu, H.F. Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Mikrochim. Acta, 2017, 184, 1517-1527.
[25]
Abdelhamid, H.N.; Lin, Y.C.; Wu, H-F. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Advances, 2017, 7, 41585-41592.
[26]
Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Quantum dot applications endowing novelty to analytical proteomics. Proteomics, 2012, 12, 2949-2961.
[27]
Abdelhamid, H.N.; Bhaisare, M.L.; Wu, H-F. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta, 2014, 120, 208-217.
[28]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68, 6652-6660.
[29]
Hua, P-Y.; Manikandan, M.; Abdelhamid, H.N.; Wu, H-F. Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J. Mater. Chem. B., 2014, 2, 7334-7343.
[30]
Abdelhamid, H.N.; Chen, Z-Y.; Wu, H-F. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal. Bioanal. Chem., 2017, 409, 4943-4950.
[31]
Abdelhamid, H.N.; Talib, A.; Wu, H.F. One pot synthesis of gold - carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta, 2017, 166, 357-363.
[32]
Sauer, S.; Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol., 2010, 8, 74-82.
[33]
Sandrin, T.R.; Goldstein, J.E.; Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: A review. Mass Spectrom. Rev., 2013, 32, 188-217.
[34]
Šedo, O.; Sedláček, I.; Zdráhal, Z. Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom. Rev., 2011, 30, 417-434.
[35]
Lay, J.O. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev., 2001, 20, 172-194.
[36]
Cheng, K.; Chui, H.; Domish, L.; Hernandez, D.; Wang, G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics, 2016, 10, 346-357.
[37]
van Belkum, A.; Chatellier, S.; Girard, V.; Pincus, D.; Deol, P.; Dunne, W.M. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev. Proteomics, 2015, 12, 595-605.
[38]
Arnold, R.J.; Karty, J.A.; Ellington, A.D.; Reilly, J.P. Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal. Chem., 1999, 71, 1990-1996.
[39]
Abdelhamid, H.N.; Wu, H-F. Monitoring metallofulfenamic-bovine serum albumin interactions: A novel method for metallodrug analysis. RSC Advances, 2014, 4, 53768-53776.
[40]
Gedda, G.; Abdelhamid, H.N.; Khan, M.S.; Wu, H-F. ZnO nanoparticle-modified polymethyl methacrylate-assisted dispersive liquid–liquid microextraction coupled with MALDI-MS for rapid pathogenic bacteria analysis. RSC Advances, 2014, 4, 45973-45983.
[41]
Abdelhamid, H.N. Laser assisted synthesis, imaging and cancer therapy of magnetic nanoparticles. Mater. Focus, 2016, 5, 305-323.
[42]
Shahnawaz Khan, M.; Abdelhamid, H.N.; Wu, H-F. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf. B Biointerfaces, 2015, 127C, 281-291.
[43]
Wu, B-S.; Abdelhamid, H.N.; Wu, H-F. Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Advances, 2014, 4, 3722.
[44]
Kumaran, S.; Abdelhamid, H.N.; Wu, H-F. Quantification analysis of protein and mycelium contents upon inhibition of melanin for: Aspergillus niger: A study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Advances, 2017, 7, 30289-30294.
[45]
Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core−shell microgels. Chem. Mater., 2007, 19, 1062-1069.
[46]
Wu, F.; Yao, N. In-situ synthesis and defect evolution of single-crystal piezoelectric nanoparticles. Nano Energy, 2016, 28, 195-205.
[47]
Larese Filon, F.; Crosera, M.; Mauro, M.; Baracchini, E.; Bovenzi, M.; Montini, T.; Fornasiero, P.; Adami, G. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin. Environ. Pollut., 2016, 214, 497-503.