[1]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[2]
Zhang, C.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater., 2019, 16, 102-125.
[3]
Bruno, M.M.; Cotella, N.G.; Miras, M.C.; Koch, T.; Seidler, S.; Barbero, C. Characterization of monolithic porous carbon prepared from resorcinol formaldehyde gels with cationic surfactant. Colloid Surf A, 2010, 358(1-3), 13-20.
[4]
Gao, X. Wang, B.; Zhang, Y.; Liu, H.; Dou, S. Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater., 2019, 16, 46-55.
[5]
Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High concentration solvent exfoliation of graphene. Small, 2010, 6(7), 864-871.
[6]
Wang, L.; Wei, Z.; Mao, M.; Wang, H. Ma, J. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater., 2019, 16, 434-454.
[7]
Campana, F.P.; Buqa, H.; Nova’k, P.; Kotz, R.; Siegenthaler, H. In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes. Electrochem. Commun., 2008, 10(10), 1590-1593.
[8]
Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Huang, Y. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater., 2019, 16, 419-425.
[9]
Ren, F.; Peng, Z.; Wang, M.; Xie, Y.; Wang, D. Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Mater., 2019, 16, 364-373.
[10]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110, 132-145.
[11]
Wu, Y.P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources, 2003, 114(2), 228-236.
[12]
Zhao, Y.; Dong, F.; Han, W.; Zhao, H.; Tang, Z. The synergistic catalytic effect between graphene oxide and three-dimensional ordered mesoporous Co3O4 nanoparticles for low-temperature CO oxidation. Microporous Mesoporous Mater., 2019, 273, 1-9.
[13]
Schnyder, B.; Alliata, D.; Kotz, R.; Siegenthaler, H. Electrochemical intercalation of perchlorate ions in HOPG: An SFM/LFM and XPS study. Appl. Surf. Sci., 2001, 173(3-4), 221-232.
[14]
Li, H.; Chen, X.; Jin, T.; Bao, W.; Jiao, L. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater., 2019, 16, 383-390.
[15]
Chung, D.D.L. Review graphite. J. Mater. Sci., 2002, 37(8), 1475-1489.
[16]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y. Synthesis of graphene-based nano sheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
[17]
Viculis, L.M.; Mack, J.J.; Mayer, O.M.; Hahn, H.T.; Kaner, R.B. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem., 2005, 15(9), 974-978.
[18]
Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9), 2653-2659.
[19]
Lim, J.; Lee, G.; Lee, H.; Cha, S.; Kim, S. Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: Fast mass transport electrodes for high-performance biosensing and energy storage. Energy Storage Mater., 2019, 16, 251-258.
[20]
Markle, W.; Tran, N.; Goers, D.; Spahr, M.E.; Novak, P. The influence of electrolyte and graphite type on the PF_ 6 intercalation behaviour at high potentials. Carbon, 2009, 47(11), 2727-2732.
[21]
Zhang, M.; Song, X.; Ou, X.; Tang, Y. Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Mater., 2019, 16, 65-84.
[22]
Hill, E.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J., 2011, 11, 3161-3170.
[23]
Inagaki, M.; Kim, Y.; Endo, M. Graphene: Preparation and structural perfection. J. Mater. Chem., 2011, 21, 3280-3294.
[24]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nano walls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[25]
Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem., 2010, 20(4), 743-748.
[26]
Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-step ionicliquid- assisted electrochemical synthesis of ionic-liquid functionalized graphene sheets directly from graphite. Adv. Funct. Mater., 2008, 18(10), 1518-1525.
[27]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[28]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228-240.
[29]
Qiu, J-D.; Huang, J.; Liang, R-P. Nano composite film based on graphene oxide for high performance flexible glucose biosensor. Sens. Actuators B Chem., 2011, 160, 287-294.
[30]
Rai, A.; Subramanian, N.; Chattopadhyay, A. Investigation of damage mechanisms in CNT nanocomposites using multiscale analysis. Int. J. Solids Struct., 2017, 120, 115-124.
[31]
Han, J.; Su, D.; Zhao, Z.; Li, X.; Jin, Z. Fabrication and toughening behavior of carbon nanotube (CNT) scaffold reinforced SiBCN ceramic composites with high CNT loading. Ceram. Int., 2017, 43, 9024-9031.
[32]
Ma, J.; Lan, X.; Niu, B.; Fan, D. The in situ growth of 3D net-like CNTs on C fiber. Mater. Chem. Phys., 2017, 192, 210-214.
[33]
Milsom, B.; Porwal, H.; Viola, G.; Gao, Z.; Reece, M. Understanding and quantification of grain growth mechanism in ZrO2-carbon nanotube composites. Mater. Des., 2017, 133, 325-331.
[34]
Omidi, M.; Khodabandeh, A.; Nategh, S.; Khakbiz, M. Wear mechanisms maps of CNT reinforced Al6061 nanocomposites treated by cryomilling and mechanical milling. Tribol. Int., 2017, 110, 151-160.
[35]
Yu, C.; Cheng, K.; Ding, J.; Deng, C. Synthesis and characterisation of Al4O4C nanorod/CNT composites. Ceram. Int., 2017, 43, 11415-11420.
[36]
Krätschmer, W.; Huffman, D.; Lamb, L.; Fostiropoulos, K. Solid C60: A new form of carbon. Nature, 1990, 347, 354-358.
[37]
Hoecker, C.; Smail, F.; Pick, M.; Boies, A. The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel. Chem. Eng. J., 2017, 314, 388-395.
[38]
Fan, L.; Li, J.; Wu, Y.; Zhang, L.; Yu, Z. Pool boiling heat transfer during quenching in carbon nanotube (CNT)-based aqueous nanofluids: Effects of length and diameter of the CNTs. Appl. Therm. Eng., 2017, 122, 555-565.
[39]
Jin, H.; Shu, H.; Bai, G.; Chen, D.; Zeng, Q. In situ synthesis of CNTs in HfB2 powders by chemical vapor deposition of methane to fabricate reinforced HfB2 composites. J. Alloys Compd., 2018, 745, 1-7.
[40]
Ubnoske, S.; Radauscher, E.; Meshot, E.; Stoner, B. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion. Carbon, 2017, 113, 192-204.
[41]
Iijima, S.; Bandow, S.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Qin, L.C. Interlayer spacing anomaly of single-wall carbon nanohorn aggregate. Chem. Phys. Lett., 2000, 321, 514.
[42]
Roslan, M.S.; Chaudhary, K.T.; Doylend, N.; Agam, A.; Kamarulzaman, R.; Haider, Z.; Mazalan, E.; Ali, J. Growth of wall-controlled MWCNTs by magnetic field assisted arc discharge plasma. J. Saudi Chem. Soc., 2019, 23(2), 171-181.
[43]
Hassan, N.; Fattah, K.; Tamimi, A. Modelling mechanical behavior of cementitious material incorporating CNTs using design of experiments. Constr. Build. Mater., 2017, 154, 763-770.
[44]
Kumar, R.; Singh, R.; Singh, D.; Vaz, A. Synthesis of self-assembled and hierarchical palladium-CNTs-reduced graphene oxide composites for enhanced field emission properties. Mater. Des., 2017, 122, 110-117.
[45]
Song, J.L.; Chen, W.G.; Dong, L.L.; Wang, J.J.; Deng, N. An electroless plating and planetary ball milling process for mechanical properties enhancement of bulk CNTs/Cu composites. J. Alloys Compd., 2017, 720, 54-62.
[46]
Sahoo, R.K.; Jacob, C. Iridium catalyzed growth of vertically aligned CNTs by APCVD. Mater. Sci. Eng., 2014, 185, 99-104.
[47]
Chen, C.; Chen, W.; Zhang, Y. Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol. Phys. E, 2005, 28, 121-127.
[48]
Khodabakhshi, F.; Gerlich, A.P.; Švec, P. Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): Microstructural characteristics and mechanical properties. Mater. Charact., 2017, 131, 359-373.
[49]
Laplaze, D.; Bernier, P.; Maser, W.K.; Flamant, G.; Guillard, T.; Loiseau, A. Carbon nanotubes: The solar approach. Carbon, 1998, 36, 685-688.
[50]
Cho, W.; Schulz, M.; Shanov, V. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon, 2014, 72, 264-273.
[51]
Rahimian-Koloor, M.; Hashemianzadeh, M. M.; Shokrieh, M. Effect of CNT structural defects on the mechanical properties of CNT/Epoxy nanocomposite. Phys. B, 2018, 540, 16-25.
[52]
Zhu, Z.; Chan, Y.; Chen, Z.; Gan, C.; Wu, F. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A, 2018, 727, 160-169.
[53]
Ghosh, P.; Soga, T.; Ghosh, K.; Afre, R.A.; Jimbo, T.; Ando, Y. Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene. J. Non-Cryst. Solids, 2008, 354, 4101.
[54]
Faria, B.; Guarda, C.; Silvestre, N.; Lopes, J.; Galhofo, D. Strength and failure mechanisms of cnt-reinforced copper nanocomposite. Compos., Part B Eng., 2018, 145, 108-120.
[55]
Kuang-Ting, H.; Sadeghian, R.; Gangireddy, S.; Minaie, B. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. A, 2006, 37(10), 1787-1795.
[56]
Nan, Y.; Li, B.; Sano, N.; Song, X. A novel structure “oversized carbon nanohorns”. Mater. Lett., 2018, 227, 254-257.
[57]
Sano, N.; Ishii, T.; Tamon, H. Transformation from single-walled carbon nanotubes to nanohorns by simple heating with Pd at 1600 °C. Carbon, 2011, 49(11), 3698-3700.
[58]
Carli, S.; Lambertini, L.; Zucchini, E.; Ciarpella, F.; Ricci, D. Single walled carbon nanohorns composite for neural sensing and stimulation. Sens. Actuators B Chem., 2018, 271, 280-288.
[59]
Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 2010, 48, 1580.
[60]
Agresti, F.; Barison, S.; Famengo, A.; Pagura, C.; Fabrizio, M. Surface oxidation of single wall carbon nanohorns for the production of surfactant free water-based colloids. J. Colloid Interface Sci., 2018, 514, 528-533.
[61]
Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem., 2012, 173, 1-21.
[62]
Tanigaki, N.; Murata, K.; Hayashi, T.; Kaneko, K. Mild oxidation-production of subnanometer-sized nanowindows of single wall carbon nanohorn. J. Colloid Interface Sci., 2018, 529, 332-336.
[63]
Zobir, S.A.M.; Zainal, Z.; Keng, C.S.; Sarijo, S.H.; Yusop, M. Synthesis of carbon nanohorn–carbon nanotube hybrids using palm olein as a precursor. Carbon, 2013, 54, 492-494.
[64]
Isaac, K.; Sabaraya, I.; Ghousifam, N.; Das, D.; Rylander, M. Functionalization of single-walled carbon nanohorns for simultaneous fluorescence imaging and cisplatin delivery in vitro. Carbon, 2018, 138, 309-318.
[65]
Sano, N.; Nakano, J.; Kanki, T. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon, 2004, 42(3), 686-688.
[66]
Mehra, N.; Jain, A.; Nahar, M. Carbon nanomaterials in oncology: An expanding horizon. Drug Discov. Today, 2018, 23, 1016-1025.
[67]
Sano, N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys., 2004, 37(8), 17-20.
[68]
Nan, Y.; Li, B.; Zhao, X.; Song, X.; Su, L. Probing the mechanical properties of carbon nanohorns subjected to uniaxial compression and hydrostatic pressure. Carbon, 2017, 125, 236-244.
[69]
Irie, M.; Nakamura, M.; Zhang, M.; Yuge, R.; Iijima, S.; Yudasaka, M. Quantification of thin graphene sheets contained in spherical aggregates of single-walled carbon nanohorns. Chem. Phys. Lett., 2010, 500, 96.
[70]
Yuge, R.; Nihey, F.; Toyama, K.; Yudasaka, M. Carbon nanotubes forming cores of fibrous aggregates of carbon nanohorns. Carbon, 2017, 122, 665-668.
[71]
Yudasaka, M.; Ichihashi, T.; Kasuya, D.; Kataura, H.; Iijima, S. Structure changes of single-wall carbon nanotubes and single wall carbon nanohorns caused by heat treatment. Carbon, 2003, 41(6), 1273-1280.
[72]
Liew, K.M.; Kai, M.F.; Zhang, L.W. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos. Struct., 2017, 160, 81-88.
[73]
Nam, I.W.; Park, S.M.; Lee, H.K.; Zheng, L. Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers. Compos. Struct., 2017, 178, 1-8.
[74]
Sarno, M.; Sannino, D.; Leone, C.; Ciambelli, P. Evaluating the effects of operating conditions on the quantity, quality and catalyzed growth mechanisms of CNTs. J. Mol. Catal. A Chem., 2012, 357, 26-38.
[75]
Taşyürek, M.; Tarakçioğlu, N. Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Compos., Part B Eng., 2017, 124, 23-30.
[76]
Zhan, M.; Pan, G.; Wang, Y.; Kuang, T.; Zhou, F. Ultrafast carbon nanotube growth by microwave irradiation. Diamond Related Materials, 2017, 77, 65-71.
[77]
Chong, C.; Tan, W.; Lee, S.; Chong, W. Morphology and growth of carbon nanotubes catalytically synthesized by premixed hydrocarbon-rich flames. Mater. Chem. Phys., 2017, 197, 246-255.
[78]
Passacantando, M.; Bussolotti, F.; Santucci, S. Tuning electromechanical response of individual CNT by selective electron beam induced deposition. J. Non-Cryst. Solids, 2010, 356, 2038-2041.