Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Antiproliferative Activity and Characterization of Metabolites of Aspergillus nidulans: An Endophytic Fungus from Nyctanthes arbor-tristis Linn. Against Three Human Cancer Cell Lines

Author(s): Talea Sana, Bina S. Siddiqui*, Saleem Shahzad, Ahsana D. Farooq, Faheema Siddiqui, Samia Sattar and Sabira Begum

Volume 15, Issue 4, 2019

Page: [352 - 359] Pages: 8

DOI: 10.2174/1573406414666180828124252

Price: $65

Abstract

Background: Endophytic fungi are receiving attention as sources of structurally novel bioactive secondary metabolites towards drug discovery from natural products. This study reports the isolation and characterization of secondary metabolites from an endophytic fungus Aspergillus nidulans, associated with Nyctanthes arbor-tristis Linn., a plant which has a traditional use to cure many ailments including cancer.

Objective: The objective of this study was to evaluate the antiproliferative activity of the metabolites of A. nidulans from N. arbor-tristis on three human cancer cell lines, lung (NCI-H460), breast (MCF-7) and uterine cervix (HeLa), and carry out their characterization.

Methods: The extracts of the endophytic fungus cultured on potato dextrose agar were subjected to various chromatographic techniques. Structures of pure compounds were determined using spectroscopic techniques. The non-polar constituents were analyzed by GC-MS. Antiproliferative activity was determined by sulforhodamine B (SRB) assay.

Results: The extracts and fractions showed moderate to good growth inhibition of the aforementioned human cancer cell lines. The broth extract was most potent (IC50 = 10 ± 3.1 μg/mL and LC50= 95 ± 3.9) against HeLa whereas petroleum ether insoluble fraction of mycelium was most active against NCI-H460 and MCF-7 (IC50 = 10 ± 2.1 µg/mL and 18 ± 3.1 µg/mL respectively). GC-MS led to identify 12 compounds in mycelium and 19 compounds in broth. Four pure compounds were isolated and characterized one compound 5, 10-dihydrophenazine-1-carboxylic acid (1) from broth and three 1-hydroxy-3-methylxanthone (2), ergosterol (3) and sterigmatocystin (4) from mycelium. 1 has not been reported earlier as a plant/fungal metabolite while 2-4 are new from this source. Sterigmatocystin exhibited growth inhibitory effect (IC50 = 50 ± 2.5 µM/mL) against only MCF-7 cell line whereas other compounds had IC50 > 100.

Conclusions: In this paper, the cytotoxicity of mycelium and broth constituents of endophytic fungus Aspergillus nidulans from Nyctanthes arbor-tristis is reported for the first time. The study shows that fungus Aspergillus nidulans from Nyctanthes arbor-tristis is capable of producing biologically active natural compounds and provides a scientific rationale for further chemical investigations of endophyte-producing natural products.

Keywords: Endophytic fungus, Aspergillus nidulans, Nyctanthes arbor-tristis Linn, antiproliferative activity, GC, GC-MS, 5, 10-dihydrophenazine-1-carboxylic acid.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014 DOI: 10.1021/acs.jnatprod.5b01055. J. Nat. Prod., 2016, 79, 629-661.
[2]
Heywood, V.H., Ed.; Global Biodiversity assessment. United Nations Environment Programme; Cambridge University Press: Cambridge, 1995.
[3]
Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23, 753-771.
[4]
Yadav, M.; Yadav, A.; Kumar, S.; Sharma, D.; Yadav, J.P. Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia Jambolana Lam. Int. J. Pharm. Pharm. Sci., 2014, 6, 208-211.
[5]
Strobel, G. Harnessing endophytes for industrial microbiology. Curr. Opin. Microbiol., 2006, 9, 240-244.
[6]
Verma, V.C.; Kharwar, R.N.; Strobel, G.A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun., 2009, 4, 1511-1532.
[7]
Kingston, D.G.I. Taxol: The chemistry and structure-activity relationships of novel anticancer agents. Trends Biotechnol., 1994, 12, 222-227.
[8]
Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants. National Institute of Science Communication and Information Resources; CSIR: Delhi, 1956.
[9]
Das, S.; Sasmal, D.; Basu, S.P. Anti-inflammatory and antinociceptive activity of arbortristoside-A. J. Ethnopharmacol., 2008, 116, 198-203.
[10]
Rathod, N.; Raghuveer, I.; Chitme, H.R.; Chandra, R. Free radical scavenging activity of Nyctanthes arbor-tristis in streptozotocin induced diabetic rats. Indian. J. Pharm. Educ., 2010, 44, 288-294.
[11]
Thatoi, H.N.; Panda, S.K.; Dutta, S.K. Antimicrobial activity and ethno medicinal use of some medicinal plants from Similipal biosphere reserve, Orissa. Asian J. Plant Sci., 2008, 7, 260-267.
[12]
Susan, T.; Muzaffer, A.; Purushothaman, K.K. Inhibitory activity of arbortristoside A in fibro sarcoma in albino rats. Arogya, 1986, 12, 122-130.
[13]
Sharma, V.; Pooja, M.A. Hypoglycemic activity of methanolic extract of Nyctanthes arbor-tristis Linn. root in alloxan induced diabetic rats. Int. J. Pharmaceut Sci., 2011, 3, 210-212.
[14]
Verma, N.S.; Dwivedi, S.; Panigrahi, D.; Gupta, S.K. Antibacterial activity of root bark of Nyctanthes arbor-tristis Linn. Int. J. Drug Discov. Herbal. Res., 2011, 1, 61-62.
[15]
Aminuddin, R.D.; Girach, A.; Khan, S. Treatment of malaria through herbal drugs from Orissa, India. Fitoterapia, 1993, 64, 545-548.
[16]
Fujimoto, H.; Satoh, Y.; Yamaguchi, K.; Yamasaki, M. Monoamine oxidase inhibitory activity of constituents from Anixiella micropertusa. Chem. Pharmaceut. Bull., 1998, 46, 1506-1510.
[17]
Munkhgerel, L.; Erdenechimeg, N.; Dumaa, M.; Zhang, G.; Odonmajig, P.; Regdel, D. Chemical and biological investigation of the Agaricus silvaticus Schaeff ex. Secr. Mangolian J. Chem., 2011, 12, 92-97.
[18]
Fremlin, L.J.; Piggott, A.M.; Lacey, E.; Capon, R.J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J. Nat. Prod., 2009, 72, 666-670.
[19]
Masada, Y. Analysis of essential oils by Gas chromatography and Mass Spectrometry; John Wiley and Sons: New York, 1976, pp. 251-255.
[20]
NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library [Computer Software]. N.D. (Version 16d 06/24/1998). Gaithersburg, MD 1998.
[21]
Skehan, P.; Storeng, R.; Scudiero, D.; Monka, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82, 1107-1112.
[22]
Qamar, K.A.; Dar, A.; Siddiqui, B.S.; Kabir, N.; Aslam, H.; Ahmed, S.; Erum, S.; Habib, S.; Begum, S. Anticancer activity of Ocimum basilicum and the effect of ursolic acid on the cytoskeleton of MCF-7 human breast cancer cells. Lett. Drug Des. Discov., 2010, 7, 726-736.
[23]
Ganesan, N.; Rajendran, R.; Ilanchezhiyan, S. Nyctanthes arbor-tristis Linn. associated fungal endophyte Aspergillus niger derived isolation of camptothecin for its antimicrobial and cytotoxic activity. Scigen J. Sci. Tech, 2015, 1, 2-9.
[24]
Raper, B.K.; Fennel, D.I. The Genus Aspergillus; Williams & Wilkins: Baltimore, 1965.
[25]
Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi; Academic Press: New York, 1980.
[26]
Ellis, M.B. More Dematiaceous Hyphomycetes; CABI Publishing: Wallingford, UK, 1976.
[27]
Meesala, S.; Ramana, M.V.; Kumar, M.M.K. Isolation, purification and structure elucidation of cytotoxic phenazine derivatives from marine Pseudomonas Aeruginosa ci 58173. J. Chem. Biol. Phys. Sci., 2016, 7, 53-76.
[28]
Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res., 2002, 22, 2587-2590.
[29]
Xu, Y.; Espinosa-Artiles, P.; Liu, M.X.; Arnold, A.E.; Gunatilaka, A.A.L. Secoemestrin D, a cytotoxic epi-tetrathiodioxopiperizine and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus. J. Nat. Prod., 2013, 76, 2330-2336.
[30]
Xu, Y.; Qian, S.Y. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed. J., 2014, 37, 112-119.
[31]
Zock, P.L.; Katan, M. Linoleic acid intake and cancer risk: A review and meta-analysis. Am. J. Clin. Nutr., 1998, 68, 142-153.
[32]
Carrillo, C.; Cavia, M.M.; Alonso-Torre, S.R. Antitumor effect of oleic acid; mechanism of action: A review. Nutr. Hosp., 2012, 27, 1860-1865.
[33]
Asghar, S.F.; Rehman, H.; Choudahry, M.I.; Rahman, A. Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extracts of Iris germanica. Int. J. Genet. Mol. Biol., 2011, 3, 95-100.
[34]
Das, U.N. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev., 2011, 30, 311-324.
[35]
Zhang, C.; Yu, H.; Ni, X.; Shen, S.; Das, U.N. Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One, 2015, 10, e0123256.
[36]
Chanda, D.; Bhushan, S.; Guru, S.K.; Shanker, K.; Wani, Z.A.; Rah, B.A.; Luqman, S.; Mondhe, D.M.; Pal, A.; Negi, A.S. Anticancer activity, toxicity and pharmacokinetic profile of an indanone derivative. Eur. J. Pharm. Sci., 2012, 47, 988-995.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy