[1]
Belmiloudi, A. Parameter identification problems and analysis of the impact of porous media in biofluid heat transfer in biological tissues during thermal therapy. Nonlinear Anal. Real World Appl., 2010, 11, 1345-1363.
[2]
Singh, P.; Tomer, N.S.; Kumar, S.; Sinha, D. Effect of radiation and porosity parameter on magneto hydrodynamic flow due to stretching sheet in porous media. Thermal. Sci., 2011, 15(2), 517-526.
[3]
Abel, M.S. Kumar, K.A. Kumar, R.R. MHD Flow, and heat transfer with effects of Buoyancy, viscous and joules dissipation over a nonlinear vertical stretching Porous sheet with partial slip. Engineering, 2011, 3, 285-291.
[4]
Sahoo, S.N. Dash, G.C. Heat and Mass transfer of MHD convective boundary layer flow past a stretching porous wall embedded in a Porous Medium. J. Eng. Thermophys., 2012, 21(3), 181-102.
[5]
Mukhopadhyay, S. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at the boundary. Alex. Eng. J., 2013, 52, 563-569.
[6]
Mandal, I.C.; Mukhopadhyay, S. Heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface heat flux in porous medium. Ain Shams Eng. J., 2013, 4, 103-110.
[7]
Singh, A.K. Madhab, B. MHD Free convective heat and mass transfer of fluid flow past a moving variable surface in porous media. IJETT, 2013, 4(4), 1151-1157.
[8]
Singh, V. Agarwal, S. MHD flow and heat transfer for maxwell fluid over an exponential stretching sheet with variable thermal conductivity in porous medium. Thermal. Sci., 2014, 18(2), 599-615.
[9]
Sinha, A.; Misra, J.C. Mixed convection hydromagnetic flow with heat generation thermophoresis and mass transfer over an inclined nonlinear porous shrinking sheet: A numerical approach. J. Mech., 2014, 30, 491-503.
[10]
Manjunatha, P.T.; Gireesha, B.J.; Kumara, B.C.P. Thermal analysis of conducting dusty fluid flow in a porous medium over a stretching cylinder in the presence of non-uniform source/sink. Int. J. Mech. Mater. Eng, 2014, 1, 13.
[11]
Hunegnaw, D. Kishan.N. Unsteady MHD heat and mass transfer flow over stretching sheet in Porous medium with variable properties considering viscous dissipation and chemical reaction. Am. Chem. Sci. J., 2014, 4(6), 901-917.
[12]
Malik, R.; Khan, M.; Mushtaq, M. Cattaneo-Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J. Mol. Liq., 2016, 222, 430-434.
[13]
Hayat, T. Qayyum, S. Imtiaz, M. Alsaedi, A. Impact of Cattaneo-Christov heat flux in jeffrey fluid flow with homogeneous-heterogeneous reactions. Plos One, 2016, 11(2) e0148662
[14]
Malik, M.Y. Khan, M. Salahuddin, T. Khan, I. Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: Using Keller box method. Int. J. Eng. Sci. Technol., 2016, 19, 1985-1992.
[15]
Kudenatti, R.B.; Kirsur, S.R.; Nargund, A.L.; Bujurke, N.M. Similarity solutions of the MHD boundary layer flow past a constant wedge within porous media. Math. Probl. Engin., 2017, 1428137, 11.
[16]
Hussain, S. Finite element solution for MHD flow of Nanofluids with Heat and Mass transfer through a Porous media with thermal radiation, viscous dissipation and chemical reaction effects. Adv. Appl. Math. Mech., 2017, 9(4), 904-923.
[17]
Makinde, O.D. Mishra, S.R. Chemically reacting MHD mixed
convection variable viscosity blasius flow embedded in a porous
medium. D D Forum, 2017, 374, 83-91.
[18]
Shah, R.A. Abbas, T. Idrees, M. Ullah, M. MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity. Bound. Value Probl., 2017, 2017, 94.
[19]
Kundu, P.K. Chakraborty, T.; Das, K. Framing the Cattaneo–Christov heat flux phenomena on CNT- based maxwell nanofluid along stretching sheet with multiple Slips. Arab. J. Sci. Eng., 2018, 43(3), 1177-1188.
[20]
Mahantesha, B.; Gireesha, B.J.; Raju, C.S.K. Cattaneo-Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source. J. Inform. Med, 2017, 9, 26-34.
[21]
Akbar, N.S.; Khan, Z.H.; Nadeem, S. The combined effect of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J. Mol. Liq., 2014, 196, 21-25.
[22]
Gorder, R.A.V.; Vajravelu, K. A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. Arch. Appl. Mech., 2010, 80(11), 1329-1332.
[23]
Shirvan, K.M.; Ellahi, R.; Mamourian, M.; Moghiman, M. Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. Int. J. Heat Mass Transf., 2017, 107, 1110-1118.
[24]
Ellahi, R.; Tariq, M.H.; Hassan, M.; Vafai, K. On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J. Mol. Liq., 2017, 229, 339-345.
[25]
Shirvan, K.M.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technol., 2017, 313, 99-111.
[26]
Esfahani, J.A.; Akbarzadeh, M.; Rashidi, S.; Rosen, M.A.; Ellahi, R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int. J. Heat Mass Transf., 2017, 109, 1162-1171.
[27]
Rashidi, S.; Esfahani, J.A.; Ellahi, R. Convective heat transfer and particle motion in an obstructed duct with two side by side obstacles by means of DPM model. Appl. Sci., 2017, 7, 431.
[28]
Hassan, M.; Zeeshan, A.; Majeed, A.; Ellahi, R. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J. Magnet. Magnet. Mater., 2017, 443, 36-44.
[29]
Rashidi, S.; Akar, S.; Bovand, M.; Ellahi, R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew. Energy, 2018, 115, 400-410.
[30]
Ijaz, N.; Zeeshan, A.; Bhatti, M.M.; Ellahi, R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J. Mol. Liq., 2018, 250, 80-87.
[31]
Zeeshan, A.; Shehzad, N.; Ellahi, R. Analysis of activation energy in Couette-Poiseuile flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys, 2018, 8, 502-512.
[32]
Ellahi, R. Special issue on recent developments of nanofluids. Appl. Sci., 2018, 8, 192.
[33]
Dogonchi, A.S.; Ganji, D.D. Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion. J. Taiwan Inst. Chem. Eng, 2016, 69, 1-13.
[34]
Dogonchi, A.S.; Ganji, D.D. Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA. Case Stud. Therm. Eng, 2015, 6, 40-51.
[35]
Dogonchi, A.S.; Ganji, D.D. Impact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect. J. Taiwan Inst. Chem. Eng, 2017, 80, 1-12.
[36]
Dogonchi, A.S.; Divsalar, K.; Ganji, D.D. Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation. Comput. Methods Appl. Mech. Engrg., 2016, 310, 58-76.
[37]
Dogonchi, A.S.; Hatami, M.; Domairry, G. Motion analysis of a spherical solid particle in plane Couette Newtonian fluid flow. Powder Technol., 2015, 274, 186-192.
[38]
Dogonchi, A.S.; Hatami, M.; Hosseinzadeh, K.; Domairry, G. Non-spherical particles sedimentation in an incompressible Newtonian medium by Padé approximation. Powder Technol., 2015, 278, 248-256.
[39]
Dogonchi, A.S.; Chamkha, A.J.; Ganji, D.D. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J. Thermal. Anal. Calorimet., 2018, 12, 319-332.
[40]
Dogonchi, A.S.; Ganji, D.D. Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect. Powder Technol., 2017, 318, 390-400.
[41]
Dogonchi, A.S.; Ganji, D.D. Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion. J. Mol. Liq., 2016, 223, 512-527.
[42]
Dogonchi, A.S.; Ganji, D.D. Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J. Mol. Liq., 2016, 220, 592-603.
[43]
Dogonchi, A.S.; Ganji, D.D. Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Appl. Therm. Eng., 2016, 103, 705-712.
[44]
Dogonchi, A.S.; Ganji, D.D. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts. Indian J. Phys., 2018, 92, 757-766.
[45]
Dogonchi, A.S.; Alizadeh, M.; Ganji, D.D. Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Adv. Powder Technol., 2017, 28, 1815-1825.
[46]
Mahantesh, M.N. Gorla, G.S.R.; Shakunthala, S. MHD blasius flow and heat transfer of a flat plate in the presence of suspended carbon nano-fluids. J. Nanomater. Nanoeng. Nanosys., 2017, 232(1), 31-40.
[47]
Mahantesh, M.N.; Shakunthala, S. Flow and heat transfer of carbon nanofluids over a vertical plate. Front. Heat Mass Transf. (FHMT),, 2017, 9, 27.
[48]
Kays, W.; Crawford, M. Convective Heat and Mass Transfer; McGraw Hill, 1980.
[49]
Mahantesh, M.N.; Shakunthala, S. Heat transfer analysis of stagnation point flow over a stretching cylinder in a suspension of carbon nanotube. J. Nanofluids, 2016, 6, 1173-1180.