[1]
C.S. Green, and D. Bavelier, "ScienceDirect Action video game training for cognitive enhancement", Curr. Opin. Behav. Sci., vol. 4, pp. 103-108, 2015.
[2]
R.J. Li, U. Polat, W. Makous, and D. Bavelier, "Enhancing the contrast sensitivity function through action video game training", Nat. Neurosci., vol. 12, pp. 549-551, 2009.
[3]
C.S. Green, T. Gorman, and D. Bavelier, "Action video-game
training and its effects on perception and attentional control, In:", Cognitive Training: An Overview of Features and Applications. Cham: Springer International Publishing, 2016, pp. 107-116.
[4]
M.S. Cain, A.N. Landau, and A.P. Shimamura, "Action video game experience reduces the cost of switching tasks", Atten. Percept. Psychophys., vol. 74, pp. 641-647, 2012.
[5]
P. Belchior, M. Marsiske, S.M. Sisco, A. Yam, D. Bavelier, K. Ball, and W.C. Mann, "Video game training to improve selective visual attention in older adults", Comput. Human Behav., vol. 29, pp. 1318-1324, 2013.
[6]
K.J. Blacker, K.M. Curby, E. Klobusicky, and J.M. Chein, "Effects of action video game training on visual working memory", J. Exp. Psychol. Hum. Percept. Perform., vol. 40, pp. 1992-2004, 2014.
[7]
A.F. McDermott, D. Bavelier, and C.S. Green, "Memory abilities in action video game players", Comput. Human Behav., vol. 34, pp. 69-78, 2014.
[8]
Y. Chen, "Q. Zhao, J. Li, B. Hu, H. Jiang, and W. Lin, A method of
removing Ocular Artifacts from EEG using discrete wavelet
transform and kalman filtering, In:", Proc. - 2016 IEEE Int. Conf.
Bioinforma. Biomed. BIBM 2016. Shenzhen, China, pp. 2017,
1485-1492.
[9]
A. Subasi, and M.I. Gursoy, "EEG signal classification using PCA, ICA, LDA and support vector machines", Expert Syst. Appl., vol. 37, pp. 8659-8666, 2010.
[10]
Y.T. Qassim, T.R.H. Cutmore, D.A. James, and D.D. Rowlands, "Wavelet coherence of EEG signals for a visual oddball task", Comput. Biol. Med., vol. 43, pp. 23-31, 2013.
[11]
M. Teplan, "Fundamentals of EEG measurement", Meas. Sci. Rev., vol. 2, pp. 1-11, 2002.
[12]
X. Liu, J. Liu, F. Duan, R. Liu, S. Gai, S. Xu, J. Sun, and X. Cai, "Inter-hemispheric frontal alpha synchronization of event-related potentials reflects memory-induced mental fatigue", Neurosci. Lett., vol. 653, pp. 326-331, 2017.
[13]
P. Sauseng, B. Griesmayr, R. Freunberger, and W. Klimesch, "Neuroscience and biobehavioral reviews control mechanisms in
working memory : A possible function of EEG theta oscillations", Neurosci. Biobehav. Rev. pp. 6-13, 2010.
[14]
T.A. Rihs, C.M. Michel, and G. Thut, "Mechanisms of selective inhibition in visual spatial attention are indexed by 〈-band EEG synchronization", Eur. J. Neurosci., vol. 25, pp. 603-610, 2007.
[15]
T. Womelsdorf, and P. Fries, "The role of neuronal synchronization in selective attention", Curr. Opin. Neurobiol., vol. 17, pp. 154-160, 2007.
[16]
W.H.R. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub, "Coherence of gamma-band EEG activity as a bais or associative learning", Nat. Lett., vol. 397, pp. 434-436, 1999.
[17]
W. Klemm, and T. Li, "J. H.-C. and Cognition, and U. 2000, “Coherent EEG indicators of cognitive binding during ambiguous figure tasks", Conscious. Cogn., vol. 9, pp. 66-85, 2000.
[18]
C. Babiloni, F. Babiloni, F. Carducci, F. Cincotti, F. Vecchio, B. Cola, S. Rossi, C. Miniussi, and P.M. Rossini, "Functional frontoparietal connectivity during short-term memory as revealed by high-resolution eeg coherence analysis", Behav. Neurosci., vol. 118, pp. 687-697, 2004.
[19]
C. Summerfield, and J.A. Mangels, "Functional coupling between frontal and parietal lobes during recognition memory", Neuroreport, vol. 16, pp. 117-122, 2005.
[20]
M. Salminen, J.M. Kivikangas, N. Ravaja, and K. Kallinen, "Frontal EEG asymmetry in the study of player experiences during competitive and cooperative dual play", IADIS Int. Conf. Game Entertain. Technol.. pp. 44-50, 2009.
[21]
M. Shin, R. Heard, C. Suo, and C.M. Chow, "Positive emotions associated with ‘counter-strike’ game playing", Games Health J., vol. 1, pp. 342-347, 2012.
[22]
J.L. Alonso, and M.A. Guevara, "Increased prefrontal-parietal EEG gamma band correlation during motor imagery in expert video game players", Actualidades en Psicología., vol. 28, pp. 26-35, 2014.
[23]
A. Subasi, "Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction", Comput. Biol. Med., vol. 37, pp. 227-244, 2015.
[24]
E. Estrada, H. Nazeran, G. Sierra, F. Ebrahimi, and S.K. Setarehdan, "Wavelet-based EEG denoising for automatic sleep
stage classification, In:", 21st International Conference on Electrical
Communications and Computers (CONIELECOMP). San Andres
Cholula, Mexico, 2011.
[25]
J-A. Jianga, C-F. Chaoa, M-J. Chiub, R-G. Leec, C-L. Tsengd, and R. Lina, "An automatic analysis method for detecting and eliminating ECG artifacts in EEG", Comput. Biol. Med., vol. 37, pp. 1660-1671, 2007.
[26]
M.N. Tibdewal, M. Mahadevappa, A.K. Ray, M. Malokar, and H.R. Dey, "Power line and ocular artifact denoising from EEG using
Notch Filter and wavelet transform, In:", Proc. 10th Indiacom - 2016
3rd Int. Conf. Comput. Sustain. Glob. Dev. New Delhi, India, pp.
1654-1659, 2016.
[27]
D. Wang, D-Q. Miao, and R-Z. Wang, "A new method of EEG
classification with feature extraction based on wavelet packet
decomposition", Tien Tzu Hsueh Pao/Acta Electron. Sin. vol. 41,
2013.
[28]
J.P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le Van Quyen, J. Martinerie, and F. Varela, "Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence", Neurophysiol. Clin. Neurophysiol., vol. 32, pp. 157-174, 2002.
[29]
A. Catarino, A. Andrade, O. Churches, A.P. Wagner, S. Baron-Cohen, and H. Ring, "Task-related functional connectivity in autism spectrum conditions: An EEG study using wavelet transform coherence", Mol. Autism, vol. 4, p. 1, 2013.
[30]
O. Faust, U.R. Acharya, H. Adeli, and A. Adeli, "Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis", Seizure, vol. 26, pp. 56-64, 2015.
[31]
C. Ieracitano, N. Mammone, F. La Foresta, and F.C. Morabito, "Investigating the brain connectivity evolution in AD and MCI
patients through the EEG signals’ wavelet coherence, In", Smart
Innovat., Syst. Technol. vol. 69, 2017, pp. 259-269.
[32]
Z. Sankari, H. Adeli, and A. Adeli, "Wavelet coherence model for diagnosis of Alzheimer Disease", Clin. EEG Neurosci., vol. 43, pp. 268-278, 2012.
[33]
İ. Güler, and E.D. Übeyli, "Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients", J. Neurosci. Methods, vol. 148, pp. 113-121, 2005.
[34]
W.Y. Hsu, "EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features", J. Neurosci. Methods, vol. 189, pp. 295-302, 2010.
[35]
E.D. Übeyli, D. Cvetkovic, G. Holland, and I. Cosic, "Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of alterations in sleep EEG activity during hypopnoea episodes", Digit. Signal Process., vol. 20, pp. 678-691, 2010.
[36]
A. Subasi, "Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction", Comput. Biol. Med., vol. 37, pp. 227-244, 2007.
[37]
S.T. Mueller, and A.G. Esposito, "Computerized testing software for
assessing interference suppression in children and adults: The Bivalent
Shape Task (BST)", J. Open Res. Softw. vol. 2, pp. e3, 2014.
[38]
P. Toril, J.M. Reales, J. Mayas, and S. Ballesteros, "Video game
training enhances visuospatial working memory and episodic
memory in older adults", Front. Hum. Neurosci. vol. 10, 2016.
[39]
A. Vandierendonck, E. Kemps, M.C. Fastame, and A. Szmalec, "Working memory components of the Corsi blocks task", Br. J. Psychol., vol. 95, pp. 57-79, 2004.
[40]
S. Mallat, "A theory for multiresolution signal decomposition: The waveletrepresentation", Pami, vol. 11, pp. 674-693, 1989.
[41]
D. Donoho, "J.J.- Biometrika, and U. 1994, “Ideal spatial adaptation by wavelet shrinkage", Biometrika, vol. 83, pp. 425-455, 1994.
[42]
N. Al-Qazzaz, S. Hamid Bin Mohd Ali, S. Ahmad, M. Islam, and J. Escudero, "Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task", Sensors, vol. 15, pp. 29015-29035, 2015.
[43]
M. Mamun, M. Al-Kadi, and M. Marufuzzaman, "Effectiveness of wavelet denoising on electroencephalogram signals", J. Appl. Res. Technol., vol. 11, pp. 156-160, 2013.
[44]
J-S. Jang, "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Trans. Syst. Man Cybern., vol. 23, pp. 665-685, 1993.
[45]
A. Klein, T. Sauer, A. Jedynak, and W. Skrandies, "Conventional and wavelet coherence applied to sensory - evoked electrical brain activity", IEEE Trans. Biomed. Eng., pp. 1-12, 2004.
[46]
L.B. White, and B. Boashash, "Cross spectral analysis of nonstationary processes", IEEE Trans. Inf. Theory, vol. 36, pp. 830-835, 1990.
[47]
R.T. Knight, W. Richard Staines, D. Swick, and L.L. Chao, "Prefrontal cortex regulates inhibition and excitation in distributed neural networks", Acta Psychol. (Amst.), vol. 101, pp. 159-178, 1999.
[48]
T. Kolodny, C. Mevorach, and L. Shalev, "Isolating response inhibition in the brain: Parietal vs. frontal contribution", Cortex, vol. 88, pp. 173-185, 2016.
[49]
S.M. Szczepanski, C.S. Konen, and S. Kastner, "Mechanisms of spatial attention control in frontal and parietal cortex", J. Neurosci., vol. 30, pp. 148-160, 2010.
[50]
W.E. MacKey, and C.E. Curtis, "Distinct contributions by frontal and
parietal cortices support working memory", Sci. Rep. vol. 7, 2017.
[51]
S. Nagamitsu, M. Nagano, Y. Yamashita, S. Takashima, and T. Matsuishi, "Prefrontal cerebral blood volume patterns while playing video games: A near-infrared spectroscopy study", Brain Dev., vol. 28, pp. 315-321, 2006.
[52]
J.D. Chisholm, and A. Kingstone, "Action video game players’ visual search advantage extends to biologically relevant stimuli", Acta Psychol. (Amst.), vol. 159, pp. 93-99, 2015.
[53]
A. Wr, "Beta activity : Attention Andrzej Wróbel a carrier for visual", Acta Neurobiol. Exp. (Wars.), vol. 60, no. 2, pp. 247-260, 2000.
[54]
Siuly. Y.L, and P. Wen, "Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface", Comput. Methods Programs Biomed., vol. 113, pp. 767-780, 2014.
[55]
C.J. Stam, A.M. Van Cappellen van Walsum, and S. Micheloyannis, "Variability of EEG synchronization during a working memory task in healthy subjects", Int. J. Psychophysiol., vol. 46, pp. 53-66, 2002.
[56]
A.K. Engel, and P. Fries, "Beta-band oscillations-signalling the status quo?", Curr. Opin. Neurobiol., vol. 20, pp. 156-165, 2010.
[57]
O. Jensen, J. Kaiser, and J. Lachaux, "Human gamma oscillations associated with attention and memory", Trends Neurosci., vol. 30, pp. 317-324, 2007.
[58]
L.S. Colzato, W.P.M. van den Wildenberg, S. Zmigrod, and B. Hommel, "Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory but not action inhibition", Psychol. Res., vol. 77, pp. 234-239, 2013.
[59]
E.O. Flores-Gutiérrez, J.L. Díaz, F.A. Barrios, M.A. Guevara, Y. del Río-Portilla, M. Corsi-Cabrera, and E.O. del Flores-Gutiérrez, "Differential alpha coherence hemispheric patterns in men and women during pleasant and unpleasant musical emotions", Int. J. Psychophysiol., vol. 71, pp. 43-49, 2009.