[1]
WR Dean M. Fluid motion in a curved channel. Proc R Soc Lond, A 1928; 121(787): 402-20.
[2]
Dean W. LXXII. The stream-line motion of fluid in a curved pipe (Second paper). J Sci 1928; 5(30): 673-95.
[3]
Berger S, Talbot L, Yao L. Flow in curved pipes. Annu Rev Fluid Mech 1983; 15(1): 461-512.
[4]
Soh WY, Berger S. Laminar entrance flow in a curved pipe. J Fluid Mech 1984; 148: 109-35.
[5]
Das S, Biswas M, Mitra A. Friction factor for gas‐non‐newtonian liquid flow in horizontal bends. Can J Chem Eng 1991; 69(1): 179-87.
[6]
Mashelkar R, Devarajan G. Secondary flows of non-Newtonian fluids: Part I–laminar boundary layer flow of a generalized non-Newtonian fluid in a coiled tube. Trans Inst Chem Eng 1976; 54(2): 100-7.
[7]
Mishra P, Gupta S. Momentum transfer in curved pipes. 1. Newtonian fluids. Ind Eng Chem Process Des Dev 1979; 18(1): 130-7.
[8]
Edwards M, Jadallah M, Smith R. Head losses in pipe fittings at low Reynolds numbers. Chem Eng Res Des 1985; 63(1): 43-50.
[9]
Bandyopadhyay TK, Das SK. Non-Newtonian pseudoplastic liquid flow through small diameter piping components. J Petrol Sci Eng 2007; 55(1-2): 156-66.
[10]
Bandyopadhyay T, Das S. Non-Newtonian and gas-non-newtonian liquid flow through elbows-CFD analysis. J Appl Mech 2013; 6(1): 131-41.
[11]
Sherwin S, Shah O, Doorly D, et al. The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. J Biomech Eng 2000; 122(1): 86-95.
[12]
Ferreira C. Algorithm for solving gene expression programming: a new adaptive problems. Comput Syst 2001; 13(2): 87-129.
[13]
Dey P, Sarkar A, Das AK. Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid-A comparative study of ANN and GEP. J Nav Arch Mar Eng 2015; 12(1): 57-71.
[14]
Dey P, Sarkar A, Das AK. Development of GEP and ANN model to predict the unsteady forced convection over a cylinder. Neural Comput Appl 2016; 27(8): 2537-49.
[15]
Dey P, Sarkar A, Das AK. Capability to predict the steady and unsteady reduced aerodynamic forces on a square cylinder by ANN and GEP. Neural Comput Appl 2017; 28(8): 1933-45.
[16]
Dey P, Das AK. A utilization of GEP (Gene Expression Programming) metamodel and PSO (Particle Swarm Optimization) tool to predict and optimize the forced convection around a cylinder. Energy 2016; 95: 447-58.
[17]
Dey P, Das AK. Prediction and optimization of unsteady forced convection around a rounded cornered square cylinder in the range of Re. Neural Comput Appl 2017; 28(6): 1503-13.
[18]
Azarkish H, Sarvari S, Behzadmehr A. Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm. Int J Therm Sci 2010; 49(11): 2222-9.
[19]
Copiello D, Fabbri G. Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins. Int J Heat Mass Transfer 2009; 52(5-6): 1167-76.
[20]
Fabbri G. A genetic algorithm for fin profile optimization. Int J Heat Mass Transfer 1997; 40(9): 2165-72.
[21]
Hajabdollahi F, Rafsanjani HH, Hajabdollahi Z, Hamidi Y. Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm. Appl Math Model 2012; 36(1): 244-54.
[22]
Mishra M, Das P. Thermoeconomic design-optimisation of crossflow plate-fin heat exchanger using Genetic Algorithm. Int J Exergy 2009; 6(6): 837-52.
[23]
Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim 2018; 131(3): 2975-91.
[24]
Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech BFluids 2017; 61: 25-32.
[25]
Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater 2017; 430: 22-8.
[26]
Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct. Physica E Low Dimens Syst Nanostruct 2017; 85: 103-8.
[27]
Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim 2017; 129(3): 1911-22.
[28]
Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E Low Dimens Syst Nanostruct 2017; 86: 68-75.
[29]
Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E Low Dimens Syst Nanostruct 2017; 88: 60-76.
[30]
Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim 2018; 131(2): 1553-66.
[31]
Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy 2017; 137: 160-71.
[32]
Gravndyan Q, Akbari OA, Toghraie D, et al. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 2017; 236: 254-65.
[33]
Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim 2018; 132(1): 741-59.
[34]
Mashayekhi R, Khodabandeh E, Bahiraei M, Bahrami L, Toghraie D, Akbari OA. Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems. a two-phase simulation. Energy Convers Manage 2017; 151: 573-86.
[35]
Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium. Physica E Low Dimens Syst Nanostruct 2017; 87: 134-40.
[36]
Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E Low Dimens Syst Nanostruct 2017; 93: 179-89.
[37]
Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E Low Dimens Syst Nanostruct 2017; 93: 167-78.
[38]
Toghraie D. Numerical thermal analysis of water’s boiling heat transfer based on a turbulent jet impingement on heated surface. Physica E Low Dimens Syst Nanostruct 2016; 84: 454-65.
[39]
Fonte TA, Taylor CA, Kim HJ, Sophie K. Method
and system for modeling blood flow with boundary
conditions for optimized diagnostic performance.
US14/447,195, 2015.
[40]
Taylor CA. Method and system for quantifying
limitations in coronary artery blood flow during
physical activity in patients with coronary artery
disease. US9,668,700, 2017.