[1]
Chiang, T.K. A scaling theory for fully-depleted, surrounding-gate MOSFET’s: including effective conducting path effect. Microelectron. Eng., 2005, 77, 175-183.
[2]
Suzuki, K.; Pidin, S. Short channel single gate SOI MOSFET model. IEEE Trans. Electron Dev., 2003, 50(5), 1297-1305.
[3]
Saremi, M.; Saremi, M.; Niazi, H.; Saremi, M.; Goharrizi, A.Y. SOI LDMOSFET with up and down extended stepped drift region. J. Electron. Mater., 2017, 46(10), 5570-5576.
[4]
Chaudhry, A.; Kumar, M.J. Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Dev., 2004, 51(9), 1463-1467.
[5]
Saremi, M.; Ebrahimi, B.; Afzali-Kusha, A. In: Ground plane SOI
MOSFET based SRAM with consideration of process variation IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China 15-17 December 2010.
[6]
Imenabadi, Rouzbeh Molaei Saremi, Mehdi.; G. Vandenberghe, William.; A novel PNPN-Like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Dev., 2017, 64(11), 4752-4758.
[7]
Takeda, E.; Kume, H.; Asai, S. New grooved-gate MOSFET with drain separated from channel implanted region(DSC). IEEE Trans. Electron Dev., 1983, 30, 448-456.
[8]
Ren, H.; Hao, Y. The influence of geometric structure on the hot-carrier-effect immunity for deep-sub-micron grooved gate PMOSFET. Solid-State Electron., 2002, 46, 665-673.
[9]
Kimura, S.; Tanaka, J.; Noda, H.; Toyabe, T.; Ihara, S. Short-channel-effect-suppressed sub-0.1-lm grooved-gate MOSFET’s with W gate. IEEE Trans. Electron Dev., 1995, 42, 94-100.
[10]
Sreelal, S.; Lau, C.K.; Samudra, G.S. parasitic capacitance characteristics of deep sub micrometer grooved gate MOSFETs. Semicond. Sci. Technol., 2002, 17, 179-188.
[11]
Seo, J.Y.; Lee, K.J.; Kim, Y.S.; Lee, S.Y.; Hwang, S.J.; Yoon, C.K. Reliability for recessed channel structure n-MOSFET. Microelectron. Reliab., 2005, 45, 1317-1320.
[12]
Bricout, P.H.; Dubois, E. Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Dev., 1996, 43, 1251-1255.
[13]
Polishchuk, I.; Ranade, P.; King, T.J.; Hu, C. Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Dev. Lett., 2001, 22, 444-446.
[14]
Saxena, M.; Haldar, S.; Gupta, M.; Gupta, R.S. Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot-electron effect and carrier transport efficiency. IEEE Trans. Electron Dev., 2002, 49, 1928-1938.
[15]
Pal, A.; Sarkar, A. Analytical study of Dual Material Surrounding Gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol., 2014, 17, 205-212.
[16]
Na, K.Y.; Kim, Y.S. Silicon complementary metal–oxide–semiconductor field effect transistors with dual work function gate. J. Appl. Phys., 2006, 45, 9033-9036.
[17]
Chaujar, R.; Kaur, R.; Saxena, M. TCAD assessment of Gate Electrode Workfunction Engineered Recessed Channel (GEWE-RC) MOSFET and its multilayered gate architecture—Part I, hot-carrier-reliability evaluation. IEEE Tran. Electron Dev., 2008, 55, 2602-2613.
[18]
Malik, P.; Gupta, R.S.; Chaujar, R.; Gupta, M. AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron. Reliabil., 2012, 52, 151-158.
[19]
Tsui, T.Y.; Huang, C.F. Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Dev. Lett., 2003, 24, 153-155.
[20]
Deb, S.; Singh, N.B.; Islam, N.; Sarkar, S.K. Work function engineering with linearly graded binary metal alloy gate electrode for short channel SOI MOSFET. IEEE Tran. Nanotechnol., 2012, 11, 472-478.
[21]
Li, T.L.; Hu, C.H.; Ho, W.L.; Wang, H.C.H.; Chang, C.Y. Continuous and precise work- function adjustment for integratable dual metal gate CMOS technology using Hf–Mo binary alloys. IEEE Trans. Electron Dev., 2005, 52, 1172-1179.
[22]
Pan, A.; Liu, R.; Sun, M.; Ning, C.Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano, 2010, 4, 671-680.
[23]
Singh, M.; Mishra, S. Mohanty, Soumya. S.; Mishra, G.P. Performance analysis of SOI MOSFET with rectangular recessed channel. Adv. Nat. Sci. Nanosci. Nanotechnol., 2016, 7(1) 015010
[24]
Mishra, S.; Lenka, A.S.; Mohanty, S.S.; Bhanja, U.; Mishra, G.P.M. In: Effect of RRC on SOI MOSFET to Improve the SCE.
2017 Devices for Integrated Circuit (DevIC), Kalyani, India, March
23-24 2017
[25]
Sentaurus Device User Guide Synopsys. 2010.
[26]
Sze, S.M. Physics of Semiconductor Device; Wiley & Sons: New York, 2004.