[1]
Platt, J.R. Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 1961, 34(3), 1-6.
[2]
Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, 2007.
[3]
Cozzi, P.G. Metal-salen schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev., 2004, 33(3), 410-421.
[4]
Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; 1st ed, Science: Elsevier B.V. , 1995.
[5]
Fahlteich, J.; Fahland, M.; Schönberger, W.; Schiller, N. Permeation barrier properties of thin oxide films on flexible polymer substrates. Thin Solid Films, 2009, 517(10), 3075-3080.
[6]
Lide, D.R. Handbook of Chemistry and Physics; 73 (Ed.). CRC
Press, Florida. , 2018.
[7]
Bidault, O.; Maglione, M.; Actis, M.; Kchikech, M.; Salce, B. Polaronic relaxation in perovskites. Phys. Rev. B, 1995, 52, 4191-4197.
[8]
Wu, J.; Nan, C.W.; Lin, Y.; Deng, Y. Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett., 2002, 89(21), 1244-3449.
[9]
Sato, H.; Minami, T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Film, 1993, 236, 27-31.
[10]
Joshi, U.S.; Itaka, K.; Matsumoto, Y.; Koinuma, H. Combinatorial fabrication and magnetic properties of homoepitaxial Co and Li Co-doped NiO thin-film nanostructures. J. Magn. Magn. Mater., 2009, 321(21), 3595-3599.
[11]
Pongha, S.; Thongbai, P.; Yamwong, T.; Maensiri, S. Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics. Scr. Mater., 2009, 60(10), 870-873.
[12]
Thongbai, P.; Yamwong, T.; Maensiri, S. Electrical responses in high permittivity dielectric (Li, Fe)-doped NiO ceramics. Appl. Phys. Lett., 2009, 94, 152905.
[13]
Tiwari, A.; Bhosle, V.M.; Ramachandran, S.; Sudhakar, N.; Narayan, J.; Budak, S.; Gupta, A. Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high curie temperature. Appl. Phys. Lett., 2006, 88(14), 4-7.
[14]
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc- blende magnetic semiconductors. Science, 2000, 287, 1019-1023.
[15]
Renaud, A.; Chavillon, B.; Cario, L.; Le Pleux, L. Le; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S. Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells. J. Phys. Chem. C, 2013, 117(44), 22478-22483.
[16]
He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S-E. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B, 1999, 103(42), 8940-8943.
[17]
Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E. New photovoltaic devices based on the sensitization of p-type semiconductors: Challenges and opportunities. Acc. Chem. Res., 2010, 43(8), 1063-1071.
[18]
O’Regan, B.; Graetzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346), 737-740.
[19]
Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye ‐ sensitized solar cells. J. Am. Ceram. Soc., 2009, 92(2), 289-301.
[20]
Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y.B.; Bach, U. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, 2008, 19(29), 19-20.
[21]
Nattestad, A.; Mozer, A.J.; Fischer, M.K.R.; Cheng, Y.B.; Mishra, A.; Bäuerle, P.; Bach, U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater., 2010, 9(1), 31-35.
[22]
He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S.E. Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells, 2000, 62(3), 265-273.
[23]
Lepleux, L.; Chavillon, B.; Pellegrini, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorg. Chem., 2009, 48(17), 8245-8250.
[24]
Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E. Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol. A Chem., 2008, 199(1), 1-7.
[25]
Huang, Z.; Natu, G.; Ji, Z.; Hasin, P.; Wu, Y. p-type Dye-sensitized NiO solar cells: A study by electrochemical impedance spectroscopy. J. Phys. Chem. C, 2011, 115(50), 25109-25114.
[26]
Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T. Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C, 2008, 112(41), 16134-16139.
[27]
Hongjun, Z.; Hagfeldt, A.; Boschloo, G. Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. J. Phys. Chem. C, 2007, 111(47), 17455-17458.
[28]
Krüger, J.; Eisenhut, F.; Guitián, E.; Perez, D.; Skidin, D.; Gamaleja, F.; Ryndyk, D.; Joachim, C.; Cuniberti, G. Peña, D.; Moresco, F.; Alonso, M.; Lehmann, T.; Eisenhut, F. Imaging the electronic structure of on-surface generated hexacene. Chem. Commun., 2017, 53, 1583-1586.
[29]
Wang, Y.; Li, M.; Zhang, Y.; Yang, J.; Zhu, S.; Sheng, L.; Wang, X.; Yang, B.; Zhang, S.X. Stress acidulated amphoteric molecules and mechanochromism via reversible intermolecular proton transfer. Chem. Commun., 2013, 49, 6587-6589.
[30]
Ajoudanian, N.; Nezamzadeh-Ejhieh, A. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Process., 2015, 36, 162-169.
[31]
Heidarineko, A.; Ghomi, A.B. p-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity. Iranian J. Catal., 2017, 7(4), 277-282.
[32]
Babaahamdi-Milani, M.; Nezamzadeh-Ejhieh, A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater., 2016, 318, 291-301.
[33]
Pourtaheri, A.; Nezamzadeh-Ejhieh, A. Enhancement in photocatalytic activity of NiO by supporting onto an iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 338-344.
[34]
Arabpour, N.; Nezamzadeh-Ejhieh, A. Photodegradation of cotrimaxazole by clinoptilolite-supported nickel oxide. Process Saf. Environ. Protec., 2016, 102, 431-440.
[35]
Ahmadi, A.; Nezamzadeh-Ejhieh, A. A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni(II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem., 2017, 801, 328-337.
[36]
Sheikh-Mohseni, M.H.; Nezamzadeh-Ejhieh, A. Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta, 2014, 147, 572-581.
[37]
Senobari, S.; Nezamzadeh-Ejhieh, A. A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: A response surface methodology study. J. Mol. Liq., 2018, 257, 173-183.
[38]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq., 2018, 261, 208-217.
[39]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci., 2017, 490, 314-327.
[40]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[41]
Chu, S.; Wang, G.; Zhou, W.; Lin, Y.; Chernyak, L.; Zhao, J. Electrically pumped waveguide lasing from ZnO nanowires electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotecnol., 2011, 6, 506-510.
[42]
Lu, M.P.; Song, J.; Lu, M.Y.; Chen, M.T.; Gao, Y.; Chen, L.J.; Wang, Z.L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett., 2009, 9(3), 1223-1227.
[43]
Chen, M.T.; Lu, M.P.; Wu, Y.J.; Song, J.; Lee, C.Y.; Lu, M.Y.; Chang, Y.C.; Chou, L.J.; Wang, Z.L.; Chen, L.J. Near UV leds made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett., 2010, 10(11), 4387-4393.
[44]
Wu, K.; Wang, C.; Chen, D. Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol-gel process. Nanotechnology, 2007, 18, 305604.
[45]
Yu, S.; Ding, L.; Xue, C.; Chen, L.; Zhang, W.F. Transparent conducting Sb-doped SnO2 thin films grown by pulsed laser deposition. J. Non-Cryst. Solids, 2012, 358, 3137-3140.
[46]
Kim, S.H.; Park, N.M.; Kim, T.; Sung, G. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 Wt.% SnO2-doped In2O3 ceramic target. Thin Solid Films, 2005, 475, 262-266.
[47]
Gupta, P.; Dutta, T.; Mal, S.; Narayan, J. Controlled p -type to n -type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys., 2012, 111(1), 013706.
[48]
Marquardt, P.; Nimtz, G.; Mühlschlegel, B. On the quasi-static conductivity of sub micrometer crystals. Solid State Commun., 1988, 65(6), 539-542.
[49]
Marquardt, P. Quantum-size affected conductivity of mesoscopic metal particles. Phys. Lett. A, 1987, 123(7), 365-368.
[50]
Frahm, K.; Miihlschlegel, B.; Nemeth, R. Size dependent ac conductivity of small metal particles. Physik B Conden. Matter, 1990, 78, 91-97.
[51]
Yetman, P.J.; Gill, J.C. Size-dependent threshold fields for Fröhlich conduction in niobium triselenide: possible evidence for pinning by the crystal surface. Solid State Commun., 1987, 62(3), 201-206.
[52]
Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem., 1986, 90(12), 2555-2560.
[53]
Suryanarayana, C. Structure and properties of nanocrystalline materials. Bull. Mater. Sci., 1994, 17(4), 307-346.
[54]
Chiang, Y.M.; Lavik, E.B.; Blom, D.A. Defect thermodynamics
and electrical properties of nanocrystalline oxides: Pure and doped
CeO2. Nanostruct. Mater., 1997, 9(1-8), 633-642.
[55]
Molenkamp, L.W.; van Houten, H.; Staring, A.A.M.; Beenakker, C.W.J. Quantum effects in thermal and thermo-electric transport in semiconductor nanostructures. Phys. Scr., 1993, 49B, 441-445.
[56]
Lu, K.; Wang, J.T.; Wei, W.D. Comparison of properties of nanocrystalline and amorphous Ni-P alloys. J. Phys. D Appl. Phys., 1992, 25(5), 808-812.
[57]
Abdulkhadar, M.; Thomas, B. dc Conductivity of nanoparticles of CdS and ZnS. Nanostruct. Mater., 1998, 10(4), 593-600.
[58]
Biju, V.; Abdul Khadar, M. ac conductivity of nanostructured nickel oxide. J. Mater. Sci., 2001, 36(24), 5779-5787.
[59]
Biju, V.; Abdul Khadar, M. dc Conductivity of consolidated nanoparticles of NiO. Mater. Res. Bull., 2001, 36(1-2), 21-33.
[60]
Moore, W.J. Seven Solid States: An Introduction to the Chemistry and Physics of Solids; W.A. Benjamin: New York, 1967.
[61]
Morin, F.J. Electrical properties of NiO. Phys. Rev., 1954, 93(6), 1199-1204.
[62]
Parravano, G. Thermoelectric behavior of nickel oxide. J. Chem. Phys., 1955, 23(1), 5-10.
[63]
Adler, D.; Feinleib, J. Electrical and optical properties of narrow-band materials. Phys. Rev. B, 1970, 2(8), 3112-3134.
[64]
Puspharajah, P. Radhak rishna, S.; Arof, A.K. Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci., 1997, 32(11), 3001-3006.
[65]
Nakamura, Y.; Ogawa, H.; Nakashima, T.; Kishimoto, A.; Yanagida, H. Strain-dependent electrical conduction in the system NiO – CaO. J. Am. Ceram. Soc., 1997, 80(6), 1609-16011.
[66]
Ksendzov, Y.M.; Avdeenko, B.K.; Makarov, V.V. Semiconductor properties of single crystals of nickel oxide. Sov. Phys. Solid State, 1967, 9(4), 828.
[67]
Bosman, A.J.; Crevecoeur, C. Mechanism of the electrical conduction in Li-doped NiO. Phys. Rev., 1966, 144(2), 763-770.
[68]
Kabashima, S.; Kawakubo, T. High frequency conductivity of NiO. J. Phys. Soc. Jpn., 1968, 24, 493-497.
[69]
Van Houtbn, S. Semiconduction in LixNi1-xO. J. Phys. Chem. Solids, 1960, 17(1-2), 7-17.
[70]
Kolber, M.A.; MacCrone, R.K. Bound-polaron hopping in NiO. Phys. Rev. Lett., 1972, 29(21), 1457-1461.
[71]
Yamashita, J.; Kurosawa, T. On electronic current in NiO. J. Phys. Chem. Solids, 1958, 5(1-2), 34-43.
[72]
Heikes, R.R.; Johnston, W.D. Mechanism of conduction in Li-substituted transition metal oxides. J. Chem. Phys., 1957, 26(3), 582-587.
[73]
Lunkenheimer, P.; Loidl, A.; Ottermann, C.R.; Bange, K. Correlated barrier hopping in NiO films. Phys. Rev. B, 1991, 44(11), 5927-5930.
[74]
Snowden, D.P.; Saltsburg, H. Hopping conduction in NiO. Phys. Rev. Lett., 1965, 14(13), 497-499.
[75]
Bosman, A.J.; van Daal, H.J. Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys., 1970, 19(77), 1-117.
[76]
Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem., 2007, 17(2), 127-156.
[77]
Hotovy, I.; Huran, J.; Siciliano, P.; Capone, S.; Spiess, L.; Rehacek, V. The influences of preparation parameters on NiO thin film properties for gas-sensing application. Sens. Actuators B Chem., 2001, 78(1-3), 126-132.
[78]
Bouessay, I.; Rougier, A.; Tarascon, J-M. Electrochemically inactive nickel oxide as electrochromic material. J. Electrochem. Soc., 2004, 151(6), H145-H152.
[79]
Svensson, J.S.E.M.; Granqvist, C.G. Electrochromic hydrated nickel oxide coatings for energy efficient windows: Optical properties and coloration mechanism. Appl. Phys. Lett., 1986, 49(23), 1566-1568.
[80]
Avendaño, E.; Berggren, L.; Niklasson, G.A.; Granqvist, C.G.; Azens, A. Electrochromic materials and devices: Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films, 2006, 496(1), 30-36.
[81]
Fasaki, I.; Giannoudakos, A.; Stamataki, M.; Kompitsas, M.; György, E.; Mihailescu, I.N.; Roubani-Kalantzopoulou, F.; Lagoyannis, A.; Harissopulos, S. Nickel oxide thin films synthesized by reactive pulsed laser deposition: Characterization and application to hydrogen sensing. Appl. Phys., A Mater. Sci. Process., 2008, 91(3), 487-492.
[82]
Sharma, R.; Acharya, A.D.; Moghe, S.; Shrivastava, S.B.; Gangrade, M.; Shripathi, T.; Ganesan, V. Effect of cobalt doping on microstructural and optical properties of nickel oxide thin films. Mater. Sci. Semicond. Process., 2014, 23, 42-49.
[83]
Sharma, R.; Acharya, A.D.; Shrivastava, S.B.; Patidar, M.M.; Gangrade, M.; Shripathi, T.; Ganesan, V. Studies on the structure optical and electrical properties of Zn-doped NiO thin films grown by spray pyrolysis. Optik, 2016, 127(11), 4661-4668.
[84]
Tyagi, M.; Tomar, M.; Gupta, V. Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal. Chim. Acta, 2012, 726, 93-101.
[85]
Chen, X.; Wu, N.J.; Smith, L.; Ignatiev, A. Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett., 2004, 84(14), 2700-2702.
[86]
Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. p-type Semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci., 2008, 105(8), 2783-2787.
[87]
Chan, I.M.; Hsu, T.Y.; Hong, F.C. Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett., 2002, 81(10), 1899-1901.
[88]
Dutta, T.; Gupta, P.; Gupta, A.; Narayan, J. High work function (p-Type NiO1+x)/Zn0.95Ga0.05O heterostructures for transparent conducting oxides. J. Phys. D Appl. Phys., 2010, 43(10), 105301.
[89]
Mattheiss, L.F. Electronic structure of the 3d transition-metal monoxides energy band results. Phys. Rev. B, 1972, 5(2), 290-306.
[90]
Shen, Z.X.; List, R.S.; Dessau, D.S.; Wells, B.O.; Jepsen, O.; Arko, A.J.; Barttlet, R.; Shih, C.K.; Parmigiani, F.; Huang, J.C.; Lindberg, P.A.P. Electronic structure of NiO: Correlation and band effects. Phys. Rev. B, 1991, 44, 3604-3626.
[91]
Ley, L.; Pollak, R.; Kowalczyk, S.; Shirley, D.A. The onset of relativistic effects in the density of states of the 6s6p elements Tl, Pb, and Bi. Phys. Lett. A, 1972, 41(5), 429-430.
[92]
Brandow, B.H. Electronic structure of mott insulators. Adv. Phys., 1977, 26(5), 651-808.
[93]
Fujimori, A.; Minami, F. Valence-band photoemission and optical absorption in nickel compounds. Phys. Rev. B, 1984, 30(2), 957-971.
[94]
Sawatzky, G.A.; Allen, J.W. Magnitude and origin of the band gap in NiO. Phys. Rev. Lett., 1984, 53(24), 2339-2342.
[95]
Hüfner, S.; Osterwalder, J.; Riesterer, T.; Hulliger, F. Photoemission and inverse photoemission spectroscopy of NiO. Solid State Commun., 1984, 52(9), 793-796.
[96]
Zaanen, J.; Sawatzky, G.A.; Allen, J.W. Band gaps and electronic structure of transition- metal compounds. Phys. Rev. Lett., 1985, 55, 418-421.
[97]
Shen, Z.X.; Shih, C.K.; Jepsen, O.; Spicer, W.E.; Lindau, I.; Allen, J.W. Aspects of the correlation effects, antiferromagnetic order, and translational symmetry of the electronic structure of NiO and CoO. Phys. Rev. Lett., 1990, 64(20), 2442-2445.
[98]
Kuhlenbeck, H.; Odörfer, G.; Jaeger, R.; Illing, G.; Menges, M.; Mull, T.; Freund, H.J.; Pöhlchen, M.; Staemmler, V.; Witzel, S.; Scharfschwerdt, C.; Wennemann, K.; Liedtke, T.; Neumann, M. Molecular adsorption on oxide surfaces: Electronic structure and orientation of NO on NiO(100)/Ni(100) and on NiO(100) as determined from electron spectroscopies and ab initio cluster calculations. Phys. Rev. B, 1991, 43(3), 1969-1986.
[99]
Svane, A.; Gunnarsson, O. Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett., 1991, 65, 1148-1151.
[100]
Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B, 1991, 44(3), 943-954.
[101]
Aryasetiawan, F.; Gunnarsson, O. Electronic structure of NiO in the GW approximation. Phys. Rev. Lett., 1995, 74(16), 3221-3224.
[102]
Massidda, S.; Continenza, A. Quasiparticle energy bands of transition-metal oxides within a model GW scheme. Phys. Rev. B, 1997, 55(20), 13494-13502.
[103]
Li, J.L.; Rignanese, G.M.; Louie, S.G. Quasiparticle energy bands of NiO in the GW approximation. Phys. Rev. B, 2005, 71(19), 193102.
[104]
Eder, R.; Dorneich, A.; Winter, H. Single-particle spectra of charge-transfer insulators by cluster perturbation theory: The correlated band structure of NiO. Phys. Rev. B, 2005, 71(4), 045105.
[105]
Slater, J.C. Magnetic effects and the Hartree-Fock equation. Phys. Rev., 1951, 82(4), 538-541.
[106]
Tjernberg, O.; Söderholm, S.; Chiaia, G.; Girard, R.; Karlsson, U.O.; Nylén, H.; Lindau, I. Influence of magnetic ordering on the NiO valence band. Phys. Rev. B, 1996, 54(15), 10245-10248.
[107]
Jauch, W.; Reehuis, M. Electron density distribution in paramagnetic and antiferromagnetic NiO: A γ-ray diffraction study. Phys. Rev. B, 2004, 70(19), 195121.
[108]
Hugel, J.; Kamal, M. The energy diagram of NiO within an LCAO-LSDA + U approach. J. Phys. Condens. Matter, 1997, 9(3), 647-661.
[109]
Bengone, O.; Alouani, M.; Bloechl, P.; Hugel, J. Implementation of the projector augmented wave LDA+U method: Application to the electronic structure of NiO. Phys. Rev. B, 2000, 62(24), 392-401.
[110]
Hüfner, S.; Steiner, P.; Sander, I.; Reinert, F.; Schmitt, H. The optical gap of NiO. Phys. B Condens. Matter, 1992, 86(2), 207-215.
[111]
Schuler, T.M.; Ederer, D.L.; Itza-Ortiz, S.; Woods, G.T.; Callcott, T.A.; Woicik, J.C. Character of the insulating state in NiO: A mixture of charge-transfer and Mott-Hubbard character. Phys. Rev. B, 2005, 71(11), 1-7.
[112]
Antoini, E. Sintering of LixMi1− XO solid solutions at 1200°C. J. Mater. Sci., 1992, 27(12), 3335-3340.
[113]
Honig, J.M.; Van Zandt, L.L.; Keem, J.E. Localized charge carrier transport in pure single crystlas of NiO. Philos. Mag. B, 1978, 37(4), 537-543.
[114]
Cox, P.A. The Electronic Structure and Chemistry of Solids; Oxford University Press, 1987.
[115]
Tuller, H.L. In: O.T. Sørensen (ed), Nonstoichiometric oxides; Academic Press: San Diego, 1981.
[116]
Morin, F.J. Electrical properties of alpha Fe2O3. Phys. Rev., 1954, 93(6), 1195-1199.
[117]
Sayer, M.; Mansingh, A.; Webb, J.B.; Noad, J. Long-range potential centres in disordered solids. J. Phys. C Solid State Phys., 1978, 11, 315-329.
[118]
Terakura, K.; Williams, A.R.; Oguchi, T.; K̈bler, J. Transition-metal monoxides: Band or Mott insulators. Phys. Rev. Lett., 1984, 52(20), 1830-1833.
[119]
Wertheim, G.K.; Hüffner, S. X-ray photoemission band structure of some transition-metal oxides. Phys. Rev. Lett., 1972, 28(16), 1028-1031.
[120]
Biju, V.; Abdul Khadar, M. Analysis of ac electrical properties of nanocrystalline nickel oxide. Mater. Sci. Eng. A, 2001, 304-306, 814-817.
[121]
Seltzer, M.S.; Jaffee, R.I. Defects and Transport in Oxides; Battelle
Institute Materials Science Colloquia, 8th, Columbus and salt Fork,
Ohio, Springer Nature Switzerland AGs, 1973.
[122]
Spear, W.E.; Tannhauser, D.S. Hole transport in pure NiO crystals. Phys. Rev. B, 1973, 7(2), 831-833.
[123]
Wasserman, H.J.; Vermaak, J.S. On the determination of a lattice contraction in very small silver particles. Surf. Sci., 1970, 22(1), 164-172.
[124]
Birringer, R. Nanocrystalline materials. Mater. Sci. Eng. A, 1989, 117, 33-43.
[125]
Wang, J.; Cai, J.; Lin, Y.H.; Nan, C.W. Room-temperature ferromagnetism observed in Fe-doped NiO. Appl. Phys. Lett., 2005, 87(20), 202501.
[126]
Manna, S.; De, S.K. Magnetic properties of Li and Fe Co-doped NiO. Solid State Commun., 2009, 149(7-8), 297-300.
[127]
Lin, Y.H.; Wang, J.; Cai, J.; Ying, M.; Zhao, R.; Li, M.; Nan, C.W. Ferromagnetism and electrical transport in Fe-doped NiO. Phys. Rev. B, 2006, 73(19), 193308.
[128]
Raja, S.P.; Venkateswaran, C. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO. J. Nanosci. Nanotechnol., 2011, 11(3), 2747-2751.
[129]
Lin, Y.H.; Zhao, R.; Nan, C.W.; Ying, M.; Kobayashi, M.; Ooki, Y.; Fujimori, A. Enhancement of ferromagnetic properties of NiO:Fe thin film by Li doping. Appl. Phys. Lett., 2006, 89(20), 96-99.
[130]
Antolini, E. LixNi1-XO (0 < x ≤ 0.3) solid solutions: Formation, structure and transport properties. Mater. Chem. Phys., 2003, 82(3), 937-948.
[131]
Nandy, S.; Maiti, U.N.; Ghosh, C.K.; Chattopadhyay, K.K. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. J. Phys. Condens. Matter, 2009, 21, 115804.
[132]
Kofstad, P. Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides; Wiley-Interscience, 1972.
[133]
Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R.; Kent, H. Introduction to Ceramics, 2nd ed; New York: Wiley, 1976.
[134]
Manna, S.; Dutta, K.; De, S.K. High dielectric permittivity observed in Na and Al doped NiO. J. Phys. D Appl. Phys., 2008, 41, 155416.
[135]
Tangwancharoen, S.; Thongbai, P.; Yamwong, T.; Maensiri, S. Dielectric and electrical properties of giant dielectric (Li, Al)-doped NiO ceramics. Mater. Chem. Phys., 2009, 115(2-3), 585-589.
[136]
Shin, W.; Murayama, N. Li-doped nickel oxide as a thermoelectric material. Jpn. J. Appl. Phys., 1999, 38, L1336-L1338.
[137]
Tiwari, S.D.; Rajeev, K.P. Magnetic properties of NiO nanoparticles. Thin Solid Films, 2006, 505(1-2), 113-117.
[138]
Manna, S.; Deb, A.K.; Jagannath, J.; De, S.K. Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C, 2008, 112(29), 10659-10662.
[139]
Philip Raja, S.; Venkateswaran, C. Investigation of magnetic behaviour of Ni-Fe-O prepared by the solid state method. J. Phys. D Appl. Phys., 2009, 42(14), 145001.
[140]
Douvalis, A.P.; Jankovic, L.; Bakas, T. The origin of ferromagnetism in 57Fe-doped NiO. J. Phys. Condens. Matter, 2007, 19, 1-25.
[141]
He, J.H.; Yuan, S.L.; Yin, Y.S.; Tian, Z.M.; Li, P.; Wang, Y.Q.; Liu, K.L.; Wang, C.H. Exchange bias and the origin of room-temperature ferromagnetism in Fe-doped NiO bulk samples. J. Appl. Phys., 2008, 103(2), 023906.
[142]
Chen, K.; Yuan, S.K.; Li, P.L.; Gao, F.; Liu, J.; Li, G.L.; Zhao, A.G.; Lu, X.M.; Liu, J.M.; Zhu, J.S. High permittivity in Zr doped NiO ceramics. J. Appl. Phys., 2007, 102(3), 31-34.
[143]
Chen, G.J.; Hsiao, Y.J.; Chang, Y.S.; Chai, Y.L. Structure and high dielectric permittivity of Li0.01M0.05Ni0.94O (M=V and W) ceramics. J. Alloys Compd., 2009, 474(1-2), 237-240.
[144]
Chantrell, R.W.; El-Hilo, E.H.; O’Grady, K. Spin-glass behavior in a fine particle system. IEEE Trans. Magn., 1991, 27(4), 3570-3578.
[145]
Hytch, M.; Putaux, J-L.; Penisson, J-M. Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature, 2003, 423, 270-273.
[146]
Son, J.; Moetakef, P.; Jalan, B.; Bierwagen, O.; Wright, N.J.; Engel-Herbert, R.; Stemmer, S. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 Cm2V-1s-1. Nat. Mater., 2010, 9(6), 482-484.
[147]
Ikuhara, Y.; Pirouz, P. High resolution transmission electron microscopy studies of metal/ceramics interfaces. Microsc. Res. Tech., 1998, 40(3), 206-241.
[148]
Stoneham, A.M. Theory of Defects in Solids - Electronic Structure of Defects in Insulators and Semiconductors; Clarendon Press: Oxford, 1985.
[149]
Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater., 2006, 5(4), 312-320.
[150]
Chu, M.W.; Szafraniak, I.; Scholz, R.; Harnagea, C.; Hesse, D.; Alexe, M.; Gösele, U. Impact of Misfit dislocation on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater., 2004, 3(2), 87-90.
[151]
Nakamura, A.; Matsunaga, K.; Tohma, J.; Yamamoto, T.; Ikuhara, Y. Conducting nanowires in insulating ceramics. Nat. Mater., 2003, 2(7), 453-456.
[152]
Ikuhara, Y. Nanowire design by dislocation technology. Prog. Mater. Sci., 2009, 54(6), 770-791.
[153]
Tokumoto, Y.; Amma, S.I.; Shibata, N.; Mizoguchi, T.; Edagawa, K.; Yamamoto, T.; Ikuhara, Y. Fabrication of electrically conductive nanowires using high-density dislocations in AlN thin films. J. Appl. Phys., 2009, 106, 124307.
[154]
Amma, S.I.; Tokumoto, Y.; Edagawa, K.; Shibata, N.; Mizoguchi, T.; Yamamoto, T.; Ikuhara, Y. Electrical current flow at conductive nanowires formed in GaN thin films by a dislocation template technique. Appl. Phys. Lett., 2010, 96, 193109.
[155]
Kioseoglou, J.; Kalesaki, E.; Belabbas, I.; Chen, J.; Nouet, G.; Kirmse, H.; Neumann, W.; Komninou, P.; Karakostas, T. Screw threading dislocations in AlN: Structural and electronic properties of In and O doped material. J. Appl. Phys., 2011, 110, 053715.
[156]
Ran, Y.; Zhang, Y.; Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys., 2009, 5(4), 298-303.
[157]
Seeger, A.; Kronmüller, H.; Rieger, H.; Träuble, H. Effect of lattice defects on the magnetization curve of ferromagnets. J. Appl. Phys., 1964, 35(3), 740-748.
[158]
Nakagawa, K.; Maeda, K.; Takuechi, S. Plastic deformation of CdTe single crystals II. Photoplastic effect of II-VI compounds. J. Phys. Soc. Jpn., 1981, 50, 3040-3046.
[159]
Sugiyama, I.; Shibata, N.; Wang, Z.; Kobayashi, S.; Yamamoto, T.; Ikuhara, Y. Ferromagnetic dislocations in antiferromagnetic NiO. Nat. Nanotechnol., 2013, 8(4), 266-270.
[160]
Cullity, B.D. Introduction to Magnetic Materials; Reading, Mass.: Addison-Wesley Pub. Co., 1972.
[161]
Bahl, C.R.H.; Hansen, M.F.; Pedersen, T.; Saadi, S.; Nielsen, K.H.; Lebech, B.; Mørup, S. The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy. J. Phys. Condens. Matter, 2006, 18(17), 4161-4175.
[162]
Bødker, F.; Hansen, M.F.; Bender Koch, C.; Mørup, S. Particle interaction effects in antiferromagnetic NiO nanoparticles. J. Magn. Magn. Mater., 2000, 221(1-2), 32-36.
[163]
Makhlouf, S.A.; Parker, F.T.; Spada, F.E.; Berkowitz, A.E. Magnetic anomalies in NiO nanoparticles. J. Appl. Phys., 1997, 81(8), 5561-5563.
[164]
Kodama, R.H.; Makhlouf, S.A.; Berkowitz, A. Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett., 1997, 79(7), 1393-1396.
[165]
Mallick, P.; Rath, C.; Rath, A.; Banerjee, A.; Mishra, N.C. Antiferro to superparamagnetic transition on Mn doping in NiO. Solid State Commun., 2010, 150(29-30), 1342-1345.
[166]
Jeong, J.R.; Lee, S.J.; Kim, J.D.; Shin, S.C. Magnetic properties of gamma-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi Basic Res., 2004, 241(7), 1593-1596.
[167]
Li, P.; Chen, L.; Qihe, R.; Li, G. Magnetic crossover of NiO nanocrystals at room temperature. Appl. Phys. Lett., 2006, 89(13), 15-18.
[168]
Tiwari, S.D.; Rajeev, K.P. Signatures of spin-glass freezing in NiO nanoparticles. Phys. Rev. B, 2005, 72(10), 1-9.
[169]
Thota, S.; Kumar, J. Sol-gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J. Phys. Chem. Solids, 2007, 68(10), 1951-1964.
[170]
Cazzanelli, E.; Kuzmin, A.; Mironova-Ulmane, N.; Mariotto, G. Behavior of one-magnon frequency in antiferromagnetic Nic Mg1-c O solid solutions. Phys. Rev. B, 2005, 71(13), 134415.
[171]
Bajpai, A.; Banerjee, A. Superparamagnetism in polycrystalline Li0.5Ni0.5O samples: Low-field susceptibility measurements. Phys. Rev. B, 2000, 62(13), 8996-9004.
[172]
Zhao, F.; Qiu, H.M.; Pan, L.Q.; Zhu, H.; Zhang, Y.P.; Guo, Z.G.; Yin, J.H.; Zhao, X.D.; Xiao, J.Q. Ferromagnetism analysis of Mn-doped CuO thin films. J. Phys. Condens. Matter, 2008, 20, 425208.
[173]
Mizokawa, T.; Nambu, T.; Fujimori, A.; Fukumura, T.; Kawasaki, M. Electronic structure of the oxide-diluted magnetic semiconductor. Phys. Rev. B, 2002, 65, 085209.
[174]
Kittilstved, K.R.; Liu, W.K.; Gamelin, D.R. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater., 2006, 5(4), 291-297.
[175]
Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater., 2005, 4(2), 173-179.
[176]
Sato, K.; Katayama, Y.H. Ab initio study on the magnetism in ZnO, ZnS, ZnSe and ZnTe based diluted magnetic semiconductors. Phys. Status Solidi Basic Res., 2002, 229(2), 673-680.
[177]
Kim, J.; Lee, Y.; Kim, M.G.; Souchkov, A.; Lee, J.S.; Drew, H.D.; Oh, S.J.; Nan, C.W.; Choi, E.J. Infrared study of giant dielectric constant in Li- and Ti-doped NiO. Phys. Rev. B, 2004, 70(17), 172106.
[178]
Matsuda, A.; Akiba, S.; Kasahara, M.; Watanabe, T.; Akita, Y.; Yoshimoto, M. Anisotropic electric conduction derived from self-organized nanogroove array on Li-doped NiO epitaxial film. Appl. Phys. Lett., 2007, 90(18), 24-27.
[179]
Joshi, U.S.; Matsumoto, Y.; Itaka, K.; Sumiya, M.; Koinuma, H. Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties. Appl. Surf. Sci., 2006, 252, 2524-2528.
[180]
Zhao, R.; Lin, Y.H.; Zhou, X.; Li, M.; Nan, C.W. Electrical and optical properties of Li-doped Ni-Si-O thin films. J. Appl. Phys., 2006, 100(4), 088003.
[181]
Feng, Z.; Seehra, M.S. Phase diagram and magnetic properties of the diluted Fcc system NipMg1-PO. Phys. Rev. B, 1992, 45(5), 2184-2189.
[182]
Kanan, R.; Seehra, M.S. Percolation effects and magnetic properties of the randomly diluted Fcc system CopMg1−pO. Phys. Rev. B, 1987, 35, 6847-6853.
[183]
Borgermann, F.J.; Maletta, H.; Zinn, W. EuxSr1−xTe spin-glass behavior in a diluted antiferromagnet. Phys. Rev. B, 1987, 35, 8454-8461.
[184]
Yan, W.; Weng, W.; Zhang, G.; Sun, Z.; Liu, Q.; Pan, Z.; Guo, Y.; Xu, P.; Wei, S.; Zhang, Y.; Yan, S. Structures and magnetic properties of (Fe, Li)-codoped NiO thin films. Appl. Phys. Lett., 2008, 92, 052508.
[185]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16), 11169-11186.
[186]
Szotek, Z.; Temmerman, W.M.; Svane, A.; Petit, L.; Strange, P.; Stocks, G.M.; Ködderitzsch, D.; Hergert, W.; Winter, H. Electronic structure of half-metallic ferromagnets and spinel ferromagnetic insulators. J. Phys. Condens. Matter, 2004, 16(48), 5587-5600.
[187]
Jacob, D.; Fernández-Rossier, J.; Palacios, J.J. Emergence of half-metallicity in suspended NiO chains: Ab initio electronic structure and quantum transport calculations. Phys. Rev. B, 2006, 74(8), 081402.
[188]
Koinuma, H.; Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 2004, 3(7), 429-438.
[189]
Fukumura, T.; Ohtani, M.; Kawasaki, M.; Okimoto, Y.; Kageyama, T.; Koida, T.; Hasegawa, T.; Tokura, Y.; Koinuma, H. Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett., 2000, 77(21), 3426-3428.
[190]
Koinuma, H.; Aiyer, H.N.; Matsumoto, Y. Combinatorial solid state materials science and technology. Sci. Technol. Adv. Mater., 2000, 1, 1-10.
[191]
Wardle, M.G.; Goss, J.P.; Briddon, P.R. Theory of Li in ZnO: A limitation for Li-based p-type doping. Phys. Rev. B, 2005, 71(15), 1-10.
[192]
Orlinskii, S.B.; Schmidt, J.; Baranov, P.G.; Hofmann, D.M.; de Mello Donegá, C.; Meijerink, A. Probing the wave function of shallow Li and Na donors in ZnO nanoparticles. Phys. Rev. Lett., 2004, 92(4), 047603.