Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Tunability of Electronic Properties and Magnetic Behaviour of Nickel Oxide: A Review

Author(s): Aman Deep Acharya and Bhawna Sarwan*

Volume 15, Issue 4, 2019

Page: [354 - 370] Pages: 17

DOI: 10.2174/1573413714666180820124910

Price: $65

Abstract

Background: Significant efforts in direction of development of smart windows with natural colour switching properties, which are in the current interest. The tailoring of the electrical conductivity as n-type and p-type is still a major challenge. In this regard, NiO has emerged as a potential candidate and auspicious functional material for various applications.

Objective: The main objective is to compile the interesting findings of the authors in context to the effect of the different filler on the properties especially electric and magnetic of NiO on one platform.

Methods: Literature survey has been done in the depth. As a whole near about 192 Research articles which include oldest as well as recent coverage about the NiO.

Conclusions: Review report conclude that instead of Mott insulator NiO is a kind of charge transfer insulator and accepted extensively theoretically as well as experimentally.

Keywords: Electrochromism, dilute magnetic semiconductor, NiO, properties, applications, doping, transition metal.

Graphical Abstract

[1]
Platt, J.R. Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 1961, 34(3), 1-6.
[2]
Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, 2007.
[3]
Cozzi, P.G. Metal-salen schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev., 2004, 33(3), 410-421.
[4]
Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; 1st ed, Science: Elsevier B.V. , 1995.
[5]
Fahlteich, J.; Fahland, M.; Schönberger, W.; Schiller, N. Permeation barrier properties of thin oxide films on flexible polymer substrates. Thin Solid Films, 2009, 517(10), 3075-3080.
[6]
Lide, D.R. Handbook of Chemistry and Physics; 73 (Ed.). CRC Press, Florida. , 2018.
[7]
Bidault, O.; Maglione, M.; Actis, M.; Kchikech, M.; Salce, B. Polaronic relaxation in perovskites. Phys. Rev. B, 1995, 52, 4191-4197.
[8]
Wu, J.; Nan, C.W.; Lin, Y.; Deng, Y. Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett., 2002, 89(21), 1244-3449.
[9]
Sato, H.; Minami, T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Film, 1993, 236, 27-31.
[10]
Joshi, U.S.; Itaka, K.; Matsumoto, Y.; Koinuma, H. Combinatorial fabrication and magnetic properties of homoepitaxial Co and Li Co-doped NiO thin-film nanostructures. J. Magn. Magn. Mater., 2009, 321(21), 3595-3599.
[11]
Pongha, S.; Thongbai, P.; Yamwong, T.; Maensiri, S. Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics. Scr. Mater., 2009, 60(10), 870-873.
[12]
Thongbai, P.; Yamwong, T.; Maensiri, S. Electrical responses in high permittivity dielectric (Li, Fe)-doped NiO ceramics. Appl. Phys. Lett., 2009, 94, 152905.
[13]
Tiwari, A.; Bhosle, V.M.; Ramachandran, S.; Sudhakar, N.; Narayan, J.; Budak, S.; Gupta, A. Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high curie temperature. Appl. Phys. Lett., 2006, 88(14), 4-7.
[14]
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc- blende magnetic semiconductors. Science, 2000, 287, 1019-1023.
[15]
Renaud, A.; Chavillon, B.; Cario, L.; Le Pleux, L. Le; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S. Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells. J. Phys. Chem. C, 2013, 117(44), 22478-22483.
[16]
He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S-E. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B, 1999, 103(42), 8940-8943.
[17]
Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E. New photovoltaic devices based on the sensitization of p-type semiconductors: Challenges and opportunities. Acc. Chem. Res., 2010, 43(8), 1063-1071.
[18]
O’Regan, B.; Graetzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346), 737-740.
[19]
Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye ‐ sensitized solar cells. J. Am. Ceram. Soc., 2009, 92(2), 289-301.
[20]
Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y.B.; Bach, U. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, 2008, 19(29), 19-20.
[21]
Nattestad, A.; Mozer, A.J.; Fischer, M.K.R.; Cheng, Y.B.; Mishra, A.; Bäuerle, P.; Bach, U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater., 2010, 9(1), 31-35.
[22]
He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S.E. Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells, 2000, 62(3), 265-273.
[23]
Lepleux, L.; Chavillon, B.; Pellegrini, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorg. Chem., 2009, 48(17), 8245-8250.
[24]
Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E. Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol. A Chem., 2008, 199(1), 1-7.
[25]
Huang, Z.; Natu, G.; Ji, Z.; Hasin, P.; Wu, Y. p-type Dye-sensitized NiO solar cells: A study by electrochemical impedance spectroscopy. J. Phys. Chem. C, 2011, 115(50), 25109-25114.
[26]
Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T. Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C, 2008, 112(41), 16134-16139.
[27]
Hongjun, Z.; Hagfeldt, A.; Boschloo, G. Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. J. Phys. Chem. C, 2007, 111(47), 17455-17458.
[28]
Krüger, J.; Eisenhut, F.; Guitián, E.; Perez, D.; Skidin, D.; Gamaleja, F.; Ryndyk, D.; Joachim, C.; Cuniberti, G. Peña, D.; Moresco, F.; Alonso, M.; Lehmann, T.; Eisenhut, F. Imaging the electronic structure of on-surface generated hexacene. Chem. Commun., 2017, 53, 1583-1586.
[29]
Wang, Y.; Li, M.; Zhang, Y.; Yang, J.; Zhu, S.; Sheng, L.; Wang, X.; Yang, B.; Zhang, S.X. Stress acidulated amphoteric molecules and mechanochromism via reversible intermolecular proton transfer. Chem. Commun., 2013, 49, 6587-6589.
[30]
Ajoudanian, N.; Nezamzadeh-Ejhieh, A. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Process., 2015, 36, 162-169.
[31]
Heidarineko, A.; Ghomi, A.B. p-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity. Iranian J. Catal., 2017, 7(4), 277-282.
[32]
Babaahamdi-Milani, M.; Nezamzadeh-Ejhieh, A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater., 2016, 318, 291-301.
[33]
Pourtaheri, A.; Nezamzadeh-Ejhieh, A. Enhancement in photocatalytic activity of NiO by supporting onto an iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 338-344.
[34]
Arabpour, N.; Nezamzadeh-Ejhieh, A. Photodegradation of cotrimaxazole by clinoptilolite-supported nickel oxide. Process Saf. Environ. Protec., 2016, 102, 431-440.
[35]
Ahmadi, A.; Nezamzadeh-Ejhieh, A. A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni(II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem., 2017, 801, 328-337.
[36]
Sheikh-Mohseni, M.H.; Nezamzadeh-Ejhieh, A. Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta, 2014, 147, 572-581.
[37]
Senobari, S.; Nezamzadeh-Ejhieh, A. A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: A response surface methodology study. J. Mol. Liq., 2018, 257, 173-183.
[38]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq., 2018, 261, 208-217.
[39]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci., 2017, 490, 314-327.
[40]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[41]
Chu, S.; Wang, G.; Zhou, W.; Lin, Y.; Chernyak, L.; Zhao, J. Electrically pumped waveguide lasing from ZnO nanowires electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotecnol., 2011, 6, 506-510.
[42]
Lu, M.P.; Song, J.; Lu, M.Y.; Chen, M.T.; Gao, Y.; Chen, L.J.; Wang, Z.L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett., 2009, 9(3), 1223-1227.
[43]
Chen, M.T.; Lu, M.P.; Wu, Y.J.; Song, J.; Lee, C.Y.; Lu, M.Y.; Chang, Y.C.; Chou, L.J.; Wang, Z.L.; Chen, L.J. Near UV leds made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett., 2010, 10(11), 4387-4393.
[44]
Wu, K.; Wang, C.; Chen, D. Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol-gel process. Nanotechnology, 2007, 18, 305604.
[45]
Yu, S.; Ding, L.; Xue, C.; Chen, L.; Zhang, W.F. Transparent conducting Sb-doped SnO2 thin films grown by pulsed laser deposition. J. Non-Cryst. Solids, 2012, 358, 3137-3140.
[46]
Kim, S.H.; Park, N.M.; Kim, T.; Sung, G. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 Wt.% SnO2-doped In2O3 ceramic target. Thin Solid Films, 2005, 475, 262-266.
[47]
Gupta, P.; Dutta, T.; Mal, S.; Narayan, J. Controlled p -type to n -type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys., 2012, 111(1), 013706.
[48]
Marquardt, P.; Nimtz, G.; Mühlschlegel, B. On the quasi-static conductivity of sub micrometer crystals. Solid State Commun., 1988, 65(6), 539-542.
[49]
Marquardt, P. Quantum-size affected conductivity of mesoscopic metal particles. Phys. Lett. A, 1987, 123(7), 365-368.
[50]
Frahm, K.; Miihlschlegel, B.; Nemeth, R. Size dependent ac conductivity of small metal particles. Physik B Conden. Matter, 1990, 78, 91-97.
[51]
Yetman, P.J.; Gill, J.C. Size-dependent threshold fields for Fröhlich conduction in niobium triselenide: possible evidence for pinning by the crystal surface. Solid State Commun., 1987, 62(3), 201-206.
[52]
Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem., 1986, 90(12), 2555-2560.
[53]
Suryanarayana, C. Structure and properties of nanocrystalline materials. Bull. Mater. Sci., 1994, 17(4), 307-346.
[54]
Chiang, Y.M.; Lavik, E.B.; Blom, D.A. Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct. Mater., 1997, 9(1-8), 633-642.
[55]
Molenkamp, L.W.; van Houten, H.; Staring, A.A.M.; Beenakker, C.W.J. Quantum effects in thermal and thermo-electric transport in semiconductor nanostructures. Phys. Scr., 1993, 49B, 441-445.
[56]
Lu, K.; Wang, J.T.; Wei, W.D. Comparison of properties of nanocrystalline and amorphous Ni-P alloys. J. Phys. D Appl. Phys., 1992, 25(5), 808-812.
[57]
Abdulkhadar, M.; Thomas, B. dc Conductivity of nanoparticles of CdS and ZnS. Nanostruct. Mater., 1998, 10(4), 593-600.
[58]
Biju, V.; Abdul Khadar, M. ac conductivity of nanostructured nickel oxide. J. Mater. Sci., 2001, 36(24), 5779-5787.
[59]
Biju, V.; Abdul Khadar, M. dc Conductivity of consolidated nanoparticles of NiO. Mater. Res. Bull., 2001, 36(1-2), 21-33.
[60]
Moore, W.J. Seven Solid States: An Introduction to the Chemistry and Physics of Solids; W.A. Benjamin: New York, 1967.
[61]
Morin, F.J. Electrical properties of NiO. Phys. Rev., 1954, 93(6), 1199-1204.
[62]
Parravano, G. Thermoelectric behavior of nickel oxide. J. Chem. Phys., 1955, 23(1), 5-10.
[63]
Adler, D.; Feinleib, J. Electrical and optical properties of narrow-band materials. Phys. Rev. B, 1970, 2(8), 3112-3134.
[64]
Puspharajah, P. Radhak rishna, S.; Arof, A.K. Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci., 1997, 32(11), 3001-3006.
[65]
Nakamura, Y.; Ogawa, H.; Nakashima, T.; Kishimoto, A.; Yanagida, H. Strain-dependent electrical conduction in the system NiO – CaO. J. Am. Ceram. Soc., 1997, 80(6), 1609-16011.
[66]
Ksendzov, Y.M.; Avdeenko, B.K.; Makarov, V.V. Semiconductor properties of single crystals of nickel oxide. Sov. Phys. Solid State, 1967, 9(4), 828.
[67]
Bosman, A.J.; Crevecoeur, C. Mechanism of the electrical conduction in Li-doped NiO. Phys. Rev., 1966, 144(2), 763-770.
[68]
Kabashima, S.; Kawakubo, T. High frequency conductivity of NiO. J. Phys. Soc. Jpn., 1968, 24, 493-497.
[69]
Van Houtbn, S. Semiconduction in LixNi1-xO. J. Phys. Chem. Solids, 1960, 17(1-2), 7-17.
[70]
Kolber, M.A.; MacCrone, R.K. Bound-polaron hopping in NiO. Phys. Rev. Lett., 1972, 29(21), 1457-1461.
[71]
Yamashita, J.; Kurosawa, T. On electronic current in NiO. J. Phys. Chem. Solids, 1958, 5(1-2), 34-43.
[72]
Heikes, R.R.; Johnston, W.D. Mechanism of conduction in Li-substituted transition metal oxides. J. Chem. Phys., 1957, 26(3), 582-587.
[73]
Lunkenheimer, P.; Loidl, A.; Ottermann, C.R.; Bange, K. Correlated barrier hopping in NiO films. Phys. Rev. B, 1991, 44(11), 5927-5930.
[74]
Snowden, D.P.; Saltsburg, H. Hopping conduction in NiO. Phys. Rev. Lett., 1965, 14(13), 497-499.
[75]
Bosman, A.J.; van Daal, H.J. Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys., 1970, 19(77), 1-117.
[76]
Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem., 2007, 17(2), 127-156.
[77]
Hotovy, I.; Huran, J.; Siciliano, P.; Capone, S.; Spiess, L.; Rehacek, V. The influences of preparation parameters on NiO thin film properties for gas-sensing application. Sens. Actuators B Chem., 2001, 78(1-3), 126-132.
[78]
Bouessay, I.; Rougier, A.; Tarascon, J-M. Electrochemically inactive nickel oxide as electrochromic material. J. Electrochem. Soc., 2004, 151(6), H145-H152.
[79]
Svensson, J.S.E.M.; Granqvist, C.G. Electrochromic hydrated nickel oxide coatings for energy efficient windows: Optical properties and coloration mechanism. Appl. Phys. Lett., 1986, 49(23), 1566-1568.
[80]
Avendaño, E.; Berggren, L.; Niklasson, G.A.; Granqvist, C.G.; Azens, A. Electrochromic materials and devices: Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films, 2006, 496(1), 30-36.
[81]
Fasaki, I.; Giannoudakos, A.; Stamataki, M.; Kompitsas, M.; György, E.; Mihailescu, I.N.; Roubani-Kalantzopoulou, F.; Lagoyannis, A.; Harissopulos, S. Nickel oxide thin films synthesized by reactive pulsed laser deposition: Characterization and application to hydrogen sensing. Appl. Phys., A Mater. Sci. Process., 2008, 91(3), 487-492.
[82]
Sharma, R.; Acharya, A.D.; Moghe, S.; Shrivastava, S.B.; Gangrade, M.; Shripathi, T.; Ganesan, V. Effect of cobalt doping on microstructural and optical properties of nickel oxide thin films. Mater. Sci. Semicond. Process., 2014, 23, 42-49.
[83]
Sharma, R.; Acharya, A.D.; Shrivastava, S.B.; Patidar, M.M.; Gangrade, M.; Shripathi, T.; Ganesan, V. Studies on the structure optical and electrical properties of Zn-doped NiO thin films grown by spray pyrolysis. Optik, 2016, 127(11), 4661-4668.
[84]
Tyagi, M.; Tomar, M.; Gupta, V. Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal. Chim. Acta, 2012, 726, 93-101.
[85]
Chen, X.; Wu, N.J.; Smith, L.; Ignatiev, A. Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett., 2004, 84(14), 2700-2702.
[86]
Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. p-type Semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci., 2008, 105(8), 2783-2787.
[87]
Chan, I.M.; Hsu, T.Y.; Hong, F.C. Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett., 2002, 81(10), 1899-1901.
[88]
Dutta, T.; Gupta, P.; Gupta, A.; Narayan, J. High work function (p-Type NiO1+x)/Zn0.95Ga0.05O heterostructures for transparent conducting oxides. J. Phys. D Appl. Phys., 2010, 43(10), 105301.
[89]
Mattheiss, L.F. Electronic structure of the 3d transition-metal monoxides energy band results. Phys. Rev. B, 1972, 5(2), 290-306.
[90]
Shen, Z.X.; List, R.S.; Dessau, D.S.; Wells, B.O.; Jepsen, O.; Arko, A.J.; Barttlet, R.; Shih, C.K.; Parmigiani, F.; Huang, J.C.; Lindberg, P.A.P. Electronic structure of NiO: Correlation and band effects. Phys. Rev. B, 1991, 44, 3604-3626.
[91]
Ley, L.; Pollak, R.; Kowalczyk, S.; Shirley, D.A. The onset of relativistic effects in the density of states of the 6s6p elements Tl, Pb, and Bi. Phys. Lett. A, 1972, 41(5), 429-430.
[92]
Brandow, B.H. Electronic structure of mott insulators. Adv. Phys., 1977, 26(5), 651-808.
[93]
Fujimori, A.; Minami, F. Valence-band photoemission and optical absorption in nickel compounds. Phys. Rev. B, 1984, 30(2), 957-971.
[94]
Sawatzky, G.A.; Allen, J.W. Magnitude and origin of the band gap in NiO. Phys. Rev. Lett., 1984, 53(24), 2339-2342.
[95]
Hüfner, S.; Osterwalder, J.; Riesterer, T.; Hulliger, F. Photoemission and inverse photoemission spectroscopy of NiO. Solid State Commun., 1984, 52(9), 793-796.
[96]
Zaanen, J.; Sawatzky, G.A.; Allen, J.W. Band gaps and electronic structure of transition- metal compounds. Phys. Rev. Lett., 1985, 55, 418-421.
[97]
Shen, Z.X.; Shih, C.K.; Jepsen, O.; Spicer, W.E.; Lindau, I.; Allen, J.W. Aspects of the correlation effects, antiferromagnetic order, and translational symmetry of the electronic structure of NiO and CoO. Phys. Rev. Lett., 1990, 64(20), 2442-2445.
[98]
Kuhlenbeck, H.; Odörfer, G.; Jaeger, R.; Illing, G.; Menges, M.; Mull, T.; Freund, H.J.; Pöhlchen, M.; Staemmler, V.; Witzel, S.; Scharfschwerdt, C.; Wennemann, K.; Liedtke, T.; Neumann, M. Molecular adsorption on oxide surfaces: Electronic structure and orientation of NO on NiO(100)/Ni(100) and on NiO(100) as determined from electron spectroscopies and ab initio cluster calculations. Phys. Rev. B, 1991, 43(3), 1969-1986.
[99]
Svane, A.; Gunnarsson, O. Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett., 1991, 65, 1148-1151.
[100]
Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B, 1991, 44(3), 943-954.
[101]
Aryasetiawan, F.; Gunnarsson, O. Electronic structure of NiO in the GW approximation. Phys. Rev. Lett., 1995, 74(16), 3221-3224.
[102]
Massidda, S.; Continenza, A. Quasiparticle energy bands of transition-metal oxides within a model GW scheme. Phys. Rev. B, 1997, 55(20), 13494-13502.
[103]
Li, J.L.; Rignanese, G.M.; Louie, S.G. Quasiparticle energy bands of NiO in the GW approximation. Phys. Rev. B, 2005, 71(19), 193102.
[104]
Eder, R.; Dorneich, A.; Winter, H. Single-particle spectra of charge-transfer insulators by cluster perturbation theory: The correlated band structure of NiO. Phys. Rev. B, 2005, 71(4), 045105.
[105]
Slater, J.C. Magnetic effects and the Hartree-Fock equation. Phys. Rev., 1951, 82(4), 538-541.
[106]
Tjernberg, O.; Söderholm, S.; Chiaia, G.; Girard, R.; Karlsson, U.O.; Nylén, H.; Lindau, I. Influence of magnetic ordering on the NiO valence band. Phys. Rev. B, 1996, 54(15), 10245-10248.
[107]
Jauch, W.; Reehuis, M. Electron density distribution in paramagnetic and antiferromagnetic NiO: A γ-ray diffraction study. Phys. Rev. B, 2004, 70(19), 195121.
[108]
Hugel, J.; Kamal, M. The energy diagram of NiO within an LCAO-LSDA + U approach. J. Phys. Condens. Matter, 1997, 9(3), 647-661.
[109]
Bengone, O.; Alouani, M.; Bloechl, P.; Hugel, J. Implementation of the projector augmented wave LDA+U method: Application to the electronic structure of NiO. Phys. Rev. B, 2000, 62(24), 392-401.
[110]
Hüfner, S.; Steiner, P.; Sander, I.; Reinert, F.; Schmitt, H. The optical gap of NiO. Phys. B Condens. Matter, 1992, 86(2), 207-215.
[111]
Schuler, T.M.; Ederer, D.L.; Itza-Ortiz, S.; Woods, G.T.; Callcott, T.A.; Woicik, J.C. Character of the insulating state in NiO: A mixture of charge-transfer and Mott-Hubbard character. Phys. Rev. B, 2005, 71(11), 1-7.
[112]
Antoini, E. Sintering of LixMi1− XO solid solutions at 1200°C. J. Mater. Sci., 1992, 27(12), 3335-3340.
[113]
Honig, J.M.; Van Zandt, L.L.; Keem, J.E. Localized charge carrier transport in pure single crystlas of NiO. Philos. Mag. B, 1978, 37(4), 537-543.
[114]
Cox, P.A. The Electronic Structure and Chemistry of Solids; Oxford University Press, 1987.
[115]
Tuller, H.L. In: O.T. Sørensen (ed), Nonstoichiometric oxides; Academic Press: San Diego, 1981.
[116]
Morin, F.J. Electrical properties of alpha Fe2O3. Phys. Rev., 1954, 93(6), 1195-1199.
[117]
Sayer, M.; Mansingh, A.; Webb, J.B.; Noad, J. Long-range potential centres in disordered solids. J. Phys. C Solid State Phys., 1978, 11, 315-329.
[118]
Terakura, K.; Williams, A.R.; Oguchi, T.; K̈bler, J. Transition-metal monoxides: Band or Mott insulators. Phys. Rev. Lett., 1984, 52(20), 1830-1833.
[119]
Wertheim, G.K.; Hüffner, S. X-ray photoemission band structure of some transition-metal oxides. Phys. Rev. Lett., 1972, 28(16), 1028-1031.
[120]
Biju, V.; Abdul Khadar, M. Analysis of ac electrical properties of nanocrystalline nickel oxide. Mater. Sci. Eng. A, 2001, 304-306, 814-817.
[121]
Seltzer, M.S.; Jaffee, R.I. Defects and Transport in Oxides; Battelle Institute Materials Science Colloquia, 8th, Columbus and salt Fork, Ohio, Springer Nature Switzerland AGs, 1973.
[122]
Spear, W.E.; Tannhauser, D.S. Hole transport in pure NiO crystals. Phys. Rev. B, 1973, 7(2), 831-833.
[123]
Wasserman, H.J.; Vermaak, J.S. On the determination of a lattice contraction in very small silver particles. Surf. Sci., 1970, 22(1), 164-172.
[124]
Birringer, R. Nanocrystalline materials. Mater. Sci. Eng. A, 1989, 117, 33-43.
[125]
Wang, J.; Cai, J.; Lin, Y.H.; Nan, C.W. Room-temperature ferromagnetism observed in Fe-doped NiO. Appl. Phys. Lett., 2005, 87(20), 202501.
[126]
Manna, S.; De, S.K. Magnetic properties of Li and Fe Co-doped NiO. Solid State Commun., 2009, 149(7-8), 297-300.
[127]
Lin, Y.H.; Wang, J.; Cai, J.; Ying, M.; Zhao, R.; Li, M.; Nan, C.W. Ferromagnetism and electrical transport in Fe-doped NiO. Phys. Rev. B, 2006, 73(19), 193308.
[128]
Raja, S.P.; Venkateswaran, C. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO. J. Nanosci. Nanotechnol., 2011, 11(3), 2747-2751.
[129]
Lin, Y.H.; Zhao, R.; Nan, C.W.; Ying, M.; Kobayashi, M.; Ooki, Y.; Fujimori, A. Enhancement of ferromagnetic properties of NiO:Fe thin film by Li doping. Appl. Phys. Lett., 2006, 89(20), 96-99.
[130]
Antolini, E. LixNi1-XO (0 < x ≤ 0.3) solid solutions: Formation, structure and transport properties. Mater. Chem. Phys., 2003, 82(3), 937-948.
[131]
Nandy, S.; Maiti, U.N.; Ghosh, C.K.; Chattopadhyay, K.K. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. J. Phys. Condens. Matter, 2009, 21, 115804.
[132]
Kofstad, P. Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides; Wiley-Interscience, 1972.
[133]
Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R.; Kent, H. Introduction to Ceramics, 2nd ed; New York: Wiley, 1976.
[134]
Manna, S.; Dutta, K.; De, S.K. High dielectric permittivity observed in Na and Al doped NiO. J. Phys. D Appl. Phys., 2008, 41, 155416.
[135]
Tangwancharoen, S.; Thongbai, P.; Yamwong, T.; Maensiri, S. Dielectric and electrical properties of giant dielectric (Li, Al)-doped NiO ceramics. Mater. Chem. Phys., 2009, 115(2-3), 585-589.
[136]
Shin, W.; Murayama, N. Li-doped nickel oxide as a thermoelectric material. Jpn. J. Appl. Phys., 1999, 38, L1336-L1338.
[137]
Tiwari, S.D.; Rajeev, K.P. Magnetic properties of NiO nanoparticles. Thin Solid Films, 2006, 505(1-2), 113-117.
[138]
Manna, S.; Deb, A.K.; Jagannath, J.; De, S.K. Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C, 2008, 112(29), 10659-10662.
[139]
Philip Raja, S.; Venkateswaran, C. Investigation of magnetic behaviour of Ni-Fe-O prepared by the solid state method. J. Phys. D Appl. Phys., 2009, 42(14), 145001.
[140]
Douvalis, A.P.; Jankovic, L.; Bakas, T. The origin of ferromagnetism in 57Fe-doped NiO. J. Phys. Condens. Matter, 2007, 19, 1-25.
[141]
He, J.H.; Yuan, S.L.; Yin, Y.S.; Tian, Z.M.; Li, P.; Wang, Y.Q.; Liu, K.L.; Wang, C.H. Exchange bias and the origin of room-temperature ferromagnetism in Fe-doped NiO bulk samples. J. Appl. Phys., 2008, 103(2), 023906.
[142]
Chen, K.; Yuan, S.K.; Li, P.L.; Gao, F.; Liu, J.; Li, G.L.; Zhao, A.G.; Lu, X.M.; Liu, J.M.; Zhu, J.S. High permittivity in Zr doped NiO ceramics. J. Appl. Phys., 2007, 102(3), 31-34.
[143]
Chen, G.J.; Hsiao, Y.J.; Chang, Y.S.; Chai, Y.L. Structure and high dielectric permittivity of Li0.01M0.05Ni0.94O (M=V and W) ceramics. J. Alloys Compd., 2009, 474(1-2), 237-240.
[144]
Chantrell, R.W.; El-Hilo, E.H.; O’Grady, K. Spin-glass behavior in a fine particle system. IEEE Trans. Magn., 1991, 27(4), 3570-3578.
[145]
Hytch, M.; Putaux, J-L.; Penisson, J-M. Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature, 2003, 423, 270-273.
[146]
Son, J.; Moetakef, P.; Jalan, B.; Bierwagen, O.; Wright, N.J.; Engel-Herbert, R.; Stemmer, S. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 Cm2V-1s-1. Nat. Mater., 2010, 9(6), 482-484.
[147]
Ikuhara, Y.; Pirouz, P. High resolution transmission electron microscopy studies of metal/ceramics interfaces. Microsc. Res. Tech., 1998, 40(3), 206-241.
[148]
Stoneham, A.M. Theory of Defects in Solids - Electronic Structure of Defects in Insulators and Semiconductors; Clarendon Press: Oxford, 1985.
[149]
Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater., 2006, 5(4), 312-320.
[150]
Chu, M.W.; Szafraniak, I.; Scholz, R.; Harnagea, C.; Hesse, D.; Alexe, M.; Gösele, U. Impact of Misfit dislocation on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater., 2004, 3(2), 87-90.
[151]
Nakamura, A.; Matsunaga, K.; Tohma, J.; Yamamoto, T.; Ikuhara, Y. Conducting nanowires in insulating ceramics. Nat. Mater., 2003, 2(7), 453-456.
[152]
Ikuhara, Y. Nanowire design by dislocation technology. Prog. Mater. Sci., 2009, 54(6), 770-791.
[153]
Tokumoto, Y.; Amma, S.I.; Shibata, N.; Mizoguchi, T.; Edagawa, K.; Yamamoto, T.; Ikuhara, Y. Fabrication of electrically conductive nanowires using high-density dislocations in AlN thin films. J. Appl. Phys., 2009, 106, 124307.
[154]
Amma, S.I.; Tokumoto, Y.; Edagawa, K.; Shibata, N.; Mizoguchi, T.; Yamamoto, T.; Ikuhara, Y. Electrical current flow at conductive nanowires formed in GaN thin films by a dislocation template technique. Appl. Phys. Lett., 2010, 96, 193109.
[155]
Kioseoglou, J.; Kalesaki, E.; Belabbas, I.; Chen, J.; Nouet, G.; Kirmse, H.; Neumann, W.; Komninou, P.; Karakostas, T. Screw threading dislocations in AlN: Structural and electronic properties of In and O doped material. J. Appl. Phys., 2011, 110, 053715.
[156]
Ran, Y.; Zhang, Y.; Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys., 2009, 5(4), 298-303.
[157]
Seeger, A.; Kronmüller, H.; Rieger, H.; Träuble, H. Effect of lattice defects on the magnetization curve of ferromagnets. J. Appl. Phys., 1964, 35(3), 740-748.
[158]
Nakagawa, K.; Maeda, K.; Takuechi, S. Plastic deformation of CdTe single crystals II. Photoplastic effect of II-VI compounds. J. Phys. Soc. Jpn., 1981, 50, 3040-3046.
[159]
Sugiyama, I.; Shibata, N.; Wang, Z.; Kobayashi, S.; Yamamoto, T.; Ikuhara, Y. Ferromagnetic dislocations in antiferromagnetic NiO. Nat. Nanotechnol., 2013, 8(4), 266-270.
[160]
Cullity, B.D. Introduction to Magnetic Materials; Reading, Mass.: Addison-Wesley Pub. Co., 1972.
[161]
Bahl, C.R.H.; Hansen, M.F.; Pedersen, T.; Saadi, S.; Nielsen, K.H.; Lebech, B.; Mørup, S. The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy. J. Phys. Condens. Matter, 2006, 18(17), 4161-4175.
[162]
Bødker, F.; Hansen, M.F.; Bender Koch, C.; Mørup, S. Particle interaction effects in antiferromagnetic NiO nanoparticles. J. Magn. Magn. Mater., 2000, 221(1-2), 32-36.
[163]
Makhlouf, S.A.; Parker, F.T.; Spada, F.E.; Berkowitz, A.E. Magnetic anomalies in NiO nanoparticles. J. Appl. Phys., 1997, 81(8), 5561-5563.
[164]
Kodama, R.H.; Makhlouf, S.A.; Berkowitz, A. Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett., 1997, 79(7), 1393-1396.
[165]
Mallick, P.; Rath, C.; Rath, A.; Banerjee, A.; Mishra, N.C. Antiferro to superparamagnetic transition on Mn doping in NiO. Solid State Commun., 2010, 150(29-30), 1342-1345.
[166]
Jeong, J.R.; Lee, S.J.; Kim, J.D.; Shin, S.C. Magnetic properties of gamma-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi Basic Res., 2004, 241(7), 1593-1596.
[167]
Li, P.; Chen, L.; Qihe, R.; Li, G. Magnetic crossover of NiO nanocrystals at room temperature. Appl. Phys. Lett., 2006, 89(13), 15-18.
[168]
Tiwari, S.D.; Rajeev, K.P. Signatures of spin-glass freezing in NiO nanoparticles. Phys. Rev. B, 2005, 72(10), 1-9.
[169]
Thota, S.; Kumar, J. Sol-gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J. Phys. Chem. Solids, 2007, 68(10), 1951-1964.
[170]
Cazzanelli, E.; Kuzmin, A.; Mironova-Ulmane, N.; Mariotto, G. Behavior of one-magnon frequency in antiferromagnetic Nic Mg1-c O solid solutions. Phys. Rev. B, 2005, 71(13), 134415.
[171]
Bajpai, A.; Banerjee, A. Superparamagnetism in polycrystalline Li0.5Ni0.5O samples: Low-field susceptibility measurements. Phys. Rev. B, 2000, 62(13), 8996-9004.
[172]
Zhao, F.; Qiu, H.M.; Pan, L.Q.; Zhu, H.; Zhang, Y.P.; Guo, Z.G.; Yin, J.H.; Zhao, X.D.; Xiao, J.Q. Ferromagnetism analysis of Mn-doped CuO thin films. J. Phys. Condens. Matter, 2008, 20, 425208.
[173]
Mizokawa, T.; Nambu, T.; Fujimori, A.; Fukumura, T.; Kawasaki, M. Electronic structure of the oxide-diluted magnetic semiconductor. Phys. Rev. B, 2002, 65, 085209.
[174]
Kittilstved, K.R.; Liu, W.K.; Gamelin, D.R. Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater., 2006, 5(4), 291-297.
[175]
Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater., 2005, 4(2), 173-179.
[176]
Sato, K.; Katayama, Y.H. Ab initio study on the magnetism in ZnO, ZnS, ZnSe and ZnTe based diluted magnetic semiconductors. Phys. Status Solidi Basic Res., 2002, 229(2), 673-680.
[177]
Kim, J.; Lee, Y.; Kim, M.G.; Souchkov, A.; Lee, J.S.; Drew, H.D.; Oh, S.J.; Nan, C.W.; Choi, E.J. Infrared study of giant dielectric constant in Li- and Ti-doped NiO. Phys. Rev. B, 2004, 70(17), 172106.
[178]
Matsuda, A.; Akiba, S.; Kasahara, M.; Watanabe, T.; Akita, Y.; Yoshimoto, M. Anisotropic electric conduction derived from self-organized nanogroove array on Li-doped NiO epitaxial film. Appl. Phys. Lett., 2007, 90(18), 24-27.
[179]
Joshi, U.S.; Matsumoto, Y.; Itaka, K.; Sumiya, M.; Koinuma, H. Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties. Appl. Surf. Sci., 2006, 252, 2524-2528.
[180]
Zhao, R.; Lin, Y.H.; Zhou, X.; Li, M.; Nan, C.W. Electrical and optical properties of Li-doped Ni-Si-O thin films. J. Appl. Phys., 2006, 100(4), 088003.
[181]
Feng, Z.; Seehra, M.S. Phase diagram and magnetic properties of the diluted Fcc system NipMg1-PO. Phys. Rev. B, 1992, 45(5), 2184-2189.
[182]
Kanan, R.; Seehra, M.S. Percolation effects and magnetic properties of the randomly diluted Fcc system CopMg1−pO. Phys. Rev. B, 1987, 35, 6847-6853.
[183]
Borgermann, F.J.; Maletta, H.; Zinn, W. EuxSr1−xTe spin-glass behavior in a diluted antiferromagnet. Phys. Rev. B, 1987, 35, 8454-8461.
[184]
Yan, W.; Weng, W.; Zhang, G.; Sun, Z.; Liu, Q.; Pan, Z.; Guo, Y.; Xu, P.; Wei, S.; Zhang, Y.; Yan, S. Structures and magnetic properties of (Fe, Li)-codoped NiO thin films. Appl. Phys. Lett., 2008, 92, 052508.
[185]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16), 11169-11186.
[186]
Szotek, Z.; Temmerman, W.M.; Svane, A.; Petit, L.; Strange, P.; Stocks, G.M.; Ködderitzsch, D.; Hergert, W.; Winter, H. Electronic structure of half-metallic ferromagnets and spinel ferromagnetic insulators. J. Phys. Condens. Matter, 2004, 16(48), 5587-5600.
[187]
Jacob, D.; Fernández-Rossier, J.; Palacios, J.J. Emergence of half-metallicity in suspended NiO chains: Ab initio electronic structure and quantum transport calculations. Phys. Rev. B, 2006, 74(8), 081402.
[188]
Koinuma, H.; Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 2004, 3(7), 429-438.
[189]
Fukumura, T.; Ohtani, M.; Kawasaki, M.; Okimoto, Y.; Kageyama, T.; Koida, T.; Hasegawa, T.; Tokura, Y.; Koinuma, H. Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett., 2000, 77(21), 3426-3428.
[190]
Koinuma, H.; Aiyer, H.N.; Matsumoto, Y. Combinatorial solid state materials science and technology. Sci. Technol. Adv. Mater., 2000, 1, 1-10.
[191]
Wardle, M.G.; Goss, J.P.; Briddon, P.R. Theory of Li in ZnO: A limitation for Li-based p-type doping. Phys. Rev. B, 2005, 71(15), 1-10.
[192]
Orlinskii, S.B.; Schmidt, J.; Baranov, P.G.; Hofmann, D.M.; de Mello Donegá, C.; Meijerink, A. Probing the wave function of shallow Li and Na donors in ZnO nanoparticles. Phys. Rev. Lett., 2004, 92(4), 047603.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy