[1]
Tiwari S, Srivastava R, Singh C, et al. Amylases: an overview with special reference to alpha amylase. J Global Biosci 2015; 4: 1886-901.
[2]
Sundarram A, Murthy TPK. α-Amylase production and applications: a review. J Appl Environ Microbiol 2014; 2(4): 166-75.
[3]
Van Der Maarel MJ, Van Der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-Amylase family. J Biotechnol 2002; 94(2): 137-55.
[4]
Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. a-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 2006; 44(2): 173-84.
[6]
Jamrath T, Lindner C, Popović MK, Bajpai R. Production of amylases and proteases by Bacillus caldolyticus from food industry wastes. Food Technol Biotechnol 2012; 50(3): 355-61.
[7]
Matthias O. Optimization of α-Amylase and glucoamylase production from three fungal strains isolated from Abakaliki, Ebonyi State. Eur J Exp Biol 2013; 3(4): 26-34.
[8]
Saha K, Maity S, Roy S, et al. Optimization of amylase production from B. amyloliquefaciens (MTCC 1270) using solid state fermentation. Int J Microbiol 2014; 2014(2): 764046.
[9]
Salman T, Kamal M, Ahmed M, et al. Medium optimization for the production of amylase by Bacillus subtilis RM16 in Shake-flask fermentation. Pak J Pharm Sci 2016; 29(2): 439-44.
[10]
Mishraa SK, Kumarb S, Kumarc S, Singhd RK. Optimization of process parameters for α-Amylase production using Artificial Neural Network (ANN) on agricultural wastes. Curr Trends Biotechnol Pharm 2016; 10(3): 248-60.
[11]
Paul JS, Lall B, Jadhav S, Tiwari K. Parameter’s optimization and kinetics study of α-Amylase enzyme of Bacillus sp. MB6 isolated from vegetable waste. Process Biochem 2017; 52: 123-9.
[12]
Tallapragada P, Dikshit R, Jadhav A, Sarah U. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 2017; 15(1): 95-101.
[13]
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-Amylases: a biotechnological perspective. Process Biochem 2003; 38(11): 1599-616.
[14]
Bruinenberg P, Hulst A, Faber A, Voogd R. A process for surface sizing or coating of paper. EP0690170A1, 1996.
[15]
Kuddus M. Microbial cold-active α-Amylases: From fundamentals to recent developments. Curr ResTechnol Education Topics Appl Microbiol Microbial Biotechnol 2010; 2010: 1265-76.
[16]
Ahlawat S, Dhiman SS, Battan B, Mandhan R, Sharma J. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 2009; 44(5): 521-6.
[17]
Feitkenhauer H. Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol 2003; 33(2-3): 250-8.
[18]
Chaudhuri SR. Microbial enzymes as detergent additives.
US9359584B2, 2016.
[19]
Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol 2002; 13(4): 345-51.
[20]
Mitidieri S, Martinelli AHS, Schrank A, Vainstein MH. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresour Technol 2006; 97(10): 1217-24.
[21]
Hmidet N, Ali NEH, Haddar A, et al. Alkaline proteases and thermostable α-Amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 2009; 47(1-3): 71-9.
[22]
Olsen HS, Falholt P. The role of enzymes in modern detergency. J Surfactants Deterg 1998; 1(4): 555-67.
[23]
Gavrilescu M, Chisti Y. Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 2005; 23(7-8): 471-99.
[24]
Ghorai S, Banik SP, Verma D, et al. Fungal biotechnology in food and feed processing. Food Res Int 2009; 42(5-6): 577-87.
[25]
Mobini-Dehkordi M, Javan FA. Application of alpha-Amylase in biotechnology. J Biol Todays World 2012; 1(1): 15-20.
[26]
Kost J, Shefer S. Chemically-modified polysaccharides for enzymatically-controlled oral drug delivery. Biomaterials 1990; 11(9): 695-8.
[27]
Dumoulin Y, Cartilier LH, Mateescu MA. Cross-linked amylose tablets containing α-Amylase: an enzymatically-controlled drug release system. J Control Release 1999; 60(2-3): 161-7.
[28]
Fleming D, Rumbaugh KP. Approaches to dispersing medical biofilms. Microorganisms 2017; 5(2): 15.
[29]
Chi Z, Chi Z, Liu G, et al. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009; 27(4): 423-31.
[30]
Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008; 99(13): 5270-95.
[31]
Jin B, Van Leeuwen H, Patel B, Yu Q. Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-Amylase by Aspergillus oryzae. Bioresour Technol 1998; 66(3): 201-6.
[32]
Lee S, Bae H, Song M, Hwang S. Bioconversion of starch processing waste to Phellinus linteus mycelium in solid-state cultivation. J Ind Microbiol Biotechnol 2008; 35(8): 859-65.
[33]
Aiyer PV. Amylases and their applications. Afr J Biotechnol 2005; 4(13): 1525-9.
[34]
Prakash O, Jaiswal N. α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2010; 160(8): 2401-14.
[35]
Asgher M, Asad MJ, Rahman S, Legge R. A thermostable α-Amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 2007; 79(3): 950-5.
[36]
Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 2003; 90(2): 207-14.
[37]
Stamford T, Stamford N, Coelho L, Araujo J. Production and characterization of a thermostable α-Amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 2001; 76(2): 137-41.
[38]
Deutch C. Characterization of a salt‐tolerant extracellular α‐Amylase from Bacillus dipsosauri. Lett Appl Microbiol 2002; 35(1): 78-84.
[39]
Prakash B, Vidyasagar M, Madhukumar M, Muralikrishna G, Sreeramulu K. Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-Amylases from Chromohalobacter sp. TVSP 101. Process Biochem 2009; 44(2): 210-5.
[40]
Hutcheon GW, Vasisht N, Bolhuis A. Characterisation of a highly stable α-Amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2005; 9(6): 487-95.
[41]
Amoozegar M, Malekzadeh F, Malik KA. Production of amylase by newly isolated moderate halophile, Halo Bacillus sp. strain MA-2. J Microbiol Methods 2003; 52(3): 353-9.
[42]
Coronado M-J, Vargas C, Hofemeister J, Ventosa A, Nieto JJ. Production and biochemical characterization of an α-Amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 2000; 183(1): 67-71.
[43]
Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L. Application of a statistical design to the optimization of culture medium for α-Amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J Food Eng 2006; 73(2): 190-7.
[44]
Jensen B, Nebelong P, Olsen J, Reeslev M. Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol Lett 2002; 24(1): 41-5.
[45]
Kunamneni A, Permaul K, Singh S. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 2005; 100(2): 168-71.
[46]
Gopinath SC, Anbu P, Arshad M, et al. Biotechnological processes in microbial amylase production. BioMed Res Int 2017; 2017(3): 1-9.
[47]
Kallio P, Palva A, Palva I. Enhancement of α-Amylase production by integrating and amplifying the α-Amylase gene of Bacillus amyloliquefaciens in the genome of Bacillus subtilis. Appl Microbiol Biotechnol 1987; 27(1): 64-71.
[48]
Niu D, Zuo Z, Shi G-Y, Wang Z-X. High yield recombinant thermostable α-Amylase production using an improved Bacillus licheniformis system. Microb Cell Fact 2009; 8(1): 58.
[49]
Zhang X, Zhang X-F, Li H-P, et al. Atmospheric and Room Temperature Plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 2014; 98(12): 5387-96.
[50]
Ma Y, Shen W, Chen X, et al. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng 2016; 10(1): 13.
[51]
Leung YC, Lo WH, Errington J. Method for production
of alpha-Amylase in recombinant Bacillus.
US7550281B2, 2009.
[52]
Borchert T, Svendsen A, Bisgård-Frantzen H. Alpha- Amylase mutants. US5989169A, 2005.
[53]
Andersen C, Ostdal H, Skagerlind P. Alpha-Amylase variants with altered properties. US20180051268, 2008.
[54]
Andersen C, Jorgensen CT, Bisgaard-frantzen H, Svendsen A, Kjaerulff S. α -Amylase variants. US 20170002340, 2017.
[55]
Zambare V. Optimization of amylase production from Bacillus sp. using statistics based experimental design. Emir J Food Agric 2011; 23(1): 37-47.
[56]
Muniandy K, Kahar UM, Chong CS, et al. Application of statistical experimental design for optimization of novel α-Amylase production by AnoxyBacillus species. J Biol Sci 2013; 13(7): 605-13.
[57]
Rasiah IA, Rehm BH. One-step production of immobilized α-Amylase in recombinant Escherichia coli. Appl Environ Microbiol 2009; 75(7): 2012-6.
[58]
Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013; 3(1): 1-9.
[59]
Namdeo M, Bajpai S. Immobilization of α-Amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal, B Enzym 2009; 59(1): 134-9.
[60]
Hosseinkhani S, Szittner R, Nemat-Gorgani M, Meighen EA. Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B. Enzyme Microb Technol 2003; 32(1): 186-93.
[61]
Kumari A, Kayastha AM. Immobilization of soybean (Glycine max) α-Amylase onto Chitosan and Amberlite MB-150 beads: optimization and characterization. J Mol Catal, B Enzym 2011; 69(1): 8-14.
[62]
Soleimani M, Khani A, Najafzadeh K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal, B Enzym 2012; 74(1-2): 1-5.
[63]
Kahraman MV, Bayramoğlu G, Kayaman-Apohan N, Güngör A. UV-curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React Funct Polym 2007; 67(2): 97-103.
[64]
Meyer L. Effect of Immobilization Method on Activity of α-Amylase The Ohio State University, Columbus, OH, USA, June 2007.
[65]
Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Pandey A. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol Biotechnol 2006; 44(2): 269-74.
[66]
Moreira FG. Lima FAd, Pedrinho SRF, et al. Production of amylases by Aspergillus tamarii. Revista de Microbiol 1999; 30(2): 157-62.
[67]
Laderman KA, Davis BR, Krutzsch HC, et al. The purification and characterization of an extremely thermostable alpha-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 1993; 268(32): 24394-401.
[68]
Lévêque E, Janeček Š, Haye B, Belarbi A. Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 2000; 26(1): 3-14.
[69]
Goto CE, Barbosa EP, Kistner LSC, et al. Production of amylase by Aspergillus fumigatus utilizing α-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiol Lett 1998; 167(2): 139-43.
[70]
Saito N, Yamamoto K. Regulatory factors affecting alpha-Amylase production in Bacillus licheniformis. J Bacteriol 1975; 121(3): 848-56.
[71]
Bunni L, McHale L, McHale A. Production, isolation and partial characterization of an amylase system produced by Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 1989; 11(6): 370-5.
[72]
Jensen B, Olsen J. Physicochemical properties of a purified alpha-Amylase from the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 1992; 14(2): 112-6.
[73]
Ramachandran S, Patel AK, Nampoothiri KM, et al. Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol 2004; 47(2): 309-17.
[74]
Paquet V, Croux C, Goma G, Soucaille P. Purification and characterization of the extracellular alpha-Amylase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1991; 57(1): 212-8.
[75]
Feller G, Le Bussy O, Gerday C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-Amylase. Appl Environ Microbiol 1998; 64(3): 1163-5.
[76]
Haki G, Rakshit S. Developments in industrially important thermostable enzymes: a review. Bioresour Technol 2003; 89(1): 17-34.
[77]
Carlsen M, Nielsen J, Villadsen J. Growth and α-Amylase production by Aspergillus oryzae during continuous cultivations. J Biotechnol 1996; 45(1): 81-93.
[78]
Hayashida S, Teramoto Y. Production and characteristics of raw-starch-digesting α-Amylase from a protease-negative Aspergillus ficum mutant. Appl Environ Microbiol 1986; 52(5): 1068-73.
[79]
Knox AM, du Preez JC, Kilian SG. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol 2004; 34(5): 453-60.
[80]
Møller K, Sharif MZ, Olsson L. Production of fungal α-Amylase by Saccharomyces kluyveri in glucose-limited cultivations. J Biotechnol 2004; 111(3): 311-8.
[81]
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65(1): 1-43.
[82]
Swamy M, Seenayya G. Thermostable pullulanase and α-Amylase activity from Clostridium thermosulfurogenes SV9-optmization of culture conditions for enzyme production. Process Biochem 1996; 31(2): 157-62.
[83]
Zaferanloo B, Bhattacharjee S, Ghorbani MM, Mahon PJ, Palombo EA. Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 2014; 14(1): 55.
[84]
Richardson TH, Tan X, Frey G, et al. A novel, high performance enzyme for starch liquefaction discovery and optimization of a low pH, thermostable α-Amylase. J Biol Chem 2002; 277(29): 26501-7.
[85]
Tee BL, Kaletunç G. Immobilization of a thermostable α‐amylase by covalent binding to an alginate matrix increases high temperature usability. Biotechnol Prog 2009; 25(2): 436-45.
[86]
Glymph J, Stutzenberger F. Production, purification, and characterization of alpha-Amylase from Thermomonospora curvata. Appl Environ Microbiol 1977; 34(4): 391-7.
[87]
Hamilton LM, Kelly CT, Fogarty WM. Purification and properties of the raw starch-degrading α-Amylase of Bacillus sp. IMD 434. Biotechnol Lett 1999; 21(2): 111-5.
[88]
Khoo S, Amirul A-A, Kamaruzaman M, Nazalan N, Azizan M. Purification and characterization of α-Amylase from Aspergillus flavus. Folia Microbiol 1994; 39(5): 392-8.
[89]
de Moraes LM, Astolfi Filho S, Ulhoa CJ. Purification and some properties of an α-Amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World J Microbiol Biotechnol 1999; 15(5): 561-4.
[90]
de Arauz LJ, Jozala AF, Mazzola PG, Penna TCV. Nisin biotechnological production and application: a review. Trends Food Sci Technol 2009; 20(3): 146-54.
[91]
Souza PMd. Application of microbial α-Amylase in industry-A review. Braz J Microbiol 2010; 41(4): 850-61.
[92]
Iefuji H, Chino M, Miyoshi K, Iimura Y. Raw-starch-digesting and thermostable α-Amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 1996; 318(3): 989-96.
[93]
Imshenetskii A, Solntseva L. Production of amylase from cultures of thermophilic bacteria. Mikrobiologiya 1944; 13: 54-64.
[94]
Tetrault PA, Egon S. Process for preparing alpha amylase. US2695863A, 1954.
[95]
Montgomery CJ, Shetty JK, Singley EC. Thermal stabilization of alpha-Amylase. EP0189838A2, 1988.