Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antimicrobial and Resistance Modifying Activities of Cerevisterol Isolated from Trametes Species

Author(s): Theresa Appiah, Christian Agyare*, Yinggang Luo, Vivian E. Boamah and Yaw D. Boakye

Volume 16, Issue 2, 2020

Page: [115 - 123] Pages: 9

DOI: 10.2174/1573407214666180813101146

Price: $65

Abstract

Background: The development of resistance by pathogenic microorganisms has renewed the worldwide search for novel antimicrobial agents. Mushrooms are of recent interest because a wide variety of biologically active compounds have been isolated from them. This study isolated antimicrobial compound from two wood decaying mushrooms, Trametes gibbosa and Trametes elegans, and determined the resistance modifying activities of the isolated compound.

Methods: Bioactivity guided isolation of active principles from the methanol extract of T. gibbosa and T. elegans was performed using column and preparative high-performance liquid chromatography. The structures of isolated compounds were elucidated using nuclear magnetic resonance spectroscopy. Broth micro-dilution assay was used to determine the antimicrobial and resistance modifying activities of the isolated compounds against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Streptococcus pyogenes, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Candida albicans, Aspergillus niger, Aspergillus flavus and Aspergillus tamarii.

Results: Bioactivity guided isolation lead to the isolation of cerevisterol (ergosta-7, 22E-diene-3β5α, 6β- triol) from both T. gibbosa and T. elegans. The isolated cerevisterol inhibited the growth of S. typhi, S. aureus and A. niger with MICs of 25 µg/mL each and 50 μg/mL against E. faecalis. The MBCs of cerevisterol against S. typhi S. aureus, E. faecalis and A. niger were 50, 100, 200 and 100 µg/mL, respectively. The sub-inhibitory concentration (3 µg/mL) of cerevisterol modified the activity of erythromycin, ampicillin, ciprofloxacin, tetracycline and amoxicillin either by potentiating or reducing their activities.

Conclusion: Cerevisterol possesses both antimicrobial and resistance modifying activities.

Keywords: Trametes gibbosa, Trametes elegans, cerevisterol, antibiotic resistance modifying activities, antimicrobial compounds, global resurgence.

Graphical Abstract

[1]
Antimicrobial resistance fact sheet., . Http: //www.who.int/mediacentre/factsheets/fs194/en/ [Accessed June 10, 2017];
[2]
Duraikannu, D.; Subathra, D.; Chandrasekaran, J.N.S.; Vaithilingam, M. A preliminary study of in vitro antioxidant and antibacterial activity of Streptomyces gancidicus VITSD1 isolated from marine soil. Curr. Bioact. Compd., 2014, 10(4), 292-297.
[http://dx.doi.org/10.2174/1573407211666141216195604]
[3]
Uysal, A.; Erdogan, G. Antimicrobial and Anti-MRSA effects of three extracts of some hypericum species against standard microorganisms and methicillin resistant Staphylococcus aureus (MRSA). Strains. Curr. Bioact. Compds, 2015, 11(3), 146-151.
[http://dx.doi.org/10.2174/1573407211666151002002131]
[4]
Antimicrobial resistance: global report on surveillance.,. http://www.who.int/drugresistance/documents/surveillancereport/en/ Accessed June 12, 2017]
[5]
Antibiotic resistance threats in the United States.,. Http://www.cdc.gov/drugresistance/threat-report-2013 Accessed June 12, 2017]
[6]
Carlet, J.; Jarlier, V.; Harbarth, S.; Voss, A.; Goossens, H.; Pittet, D. Ready for a world without antibiotics? The pensieres antibiotic resistances call to action. Antimicrob. Resist. Infect. Control, 2012, 1(1), 11.
[http://dx.doi.org/10.1186/2047-2994-1-11] [PMID: 22958833]
[7]
Wanner, J.; Tabanca, N.; Zehl, M.; Becnel, J.J.; Li, A.Y.; Khan, I.A. Investigations into the chemistry and insecticidal activity of Euonymus europaeus seed oil and methanol extract. Curr. Bioact. Compd., 2015, 11(1), 13-22.
[http://dx.doi.org/10.2174/157340721101150804142925]
[8]
Stanetic, D.; Buchbauer, G. Biological activity of some volatile diterpenoids. Curr. Bioact. Compd., 2015, (11), 38-48.
[http://dx.doi.org/10.2174/157340721101150804150419]
[9]
Alves, M.J.; Ferreira, I.C.; Froufe, H.J.; Abreu, R.M.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol., 2013, 115(2), 346-357.
[http://dx.doi.org/10.1111/jam.12196] [PMID: 23510516]
[10]
Yim, H.S.; Akowuah, G.A.; Chye, F.Y.; Sia, C.M.; Okechukwu, P.N.; Ho, C.W. Identification of apigenin-7-glucoside and luteolin-7-glucoside in Pleurotus porrigens and Schizophyllum commune mushrooms by liquid chromatography-ion trap tandem mass spectrometry. Curr. Bioact. Compd., 2015, 11(3), 202-208.
[http://dx.doi.org/10.2174/157340721103151103125315]
[11]
Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; Taboureau, O.; Yaver, D. Elvig- Jørgensen, S.G.; Sørensen, M.V.; Christensen, B.E.; Kjærulff, S.; Frimodt-Moller, N.; Lehrer, R. I.; Zasloff, M.; Kristensen, H-H. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nat., 2005, 437, 975-980.
[http://dx.doi.org/10.1038/nature04051]
[12]
Mothana, R.A.A.; Jansen, R.; Jülich, W.D.; Lindequist, U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod., 2000, 63(3), 416-418.
[http://dx.doi.org/10.1021/np990381y] [PMID: 10757736]
[13]
Liu, T.F.; Lu, X.; Tang, H.; Zhang, M.M.; Wang, P.; Sun, P.; Liu, Z.Y.; Wang, Z.L.; Li, L.; Rui, Y.C.; Li, T.J.; Zhang, W. 3β,5α,6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function. Steroids, 2013, 78(1), 108-114.
[http://dx.doi.org/10.1016/j.steroids.2012.10.003] [PMID: 23123740]
[14]
Zhou, F.; Zhang, H.; Liu, R.; Zhang, D. Isolation and biological evaluation of secondary metabolites of the endophytic fungus Aspergillus fumigatus from astragalus membranaceus. Chem. Nat. Compd., 2013, 49(3), 3-12.
[http://dx.doi.org/10.1007/s10600-013-0675-0]
[15]
Zjawiony, J.K. Biologically active compounds from Aphyllophorales (polypore) fungi. J. Nat. Prod., 2004, 67(2), 300-310.
[http://dx.doi.org/10.1021/np030372w] [PMID: 14987072]
[16]
Kout, J.; Vlasák, J. Trametes gibbosa (Basidiomycetes, Polyporales) in the USA and Canada. Can. J. Bot., 2007, 85(3), 342-346.
[http://dx.doi.org/10.1139/B07-013]
[17]
Awala, S.I.; Oyetayo, V.O. Molecular identity and antimicrobial profile of Trametes species Collected from the Teaching and Research Farm of the Federal University of Technology, Akure, Nigeria. J. Advan. Med. Pharmaceut. Sci., 2015, 4(3), 2394-1111.
[http://dx.doi.org/10.9734/JAMPS/2015/20059]
[18]
Lara, M.A.; Rodríquez-Malaver, A.J.; Rojas, O.J.; Holmquist, O.; González, A.M.; Bullón, J.P.N.; Araujo, E. Black liquor lignin biodegradation by Trametes elegans. Int. Biodeter. Biodegr., 2003, 52, 167-173.
[http://dx.doi.org/10.1016/S0964-8305(03)00055-6]
[19]
Aina, D.; Olawuyi, O.; Mensah-Agyei, G.; Laiya, A.; Adeoye-Isijola, M. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of methanolic and ethanolic extracts of Daedalea elegans - A Nigerian Mushroom. Adv. Pharmaceut. J., 2016, 1(2), 38-42.
[20]
Ga, J.; Kaviyarasana, V. Antimicrobial and antioxidant properties of Trametes gibbosa (pers). Fr. J. Pharm. Res., 2011, 4(11), 39.
[21]
Mbayo, M.K.; Kalonda, E.M.; Tshisand, P.T.; Tatchoua, O.; Kamulete, S.; Glauber, K. Chemical Screening of some mushrooms of Katanga (DRC) and their biological activities evaluation. Int. J. Innov. Appl. Stud., 2015, 10(1), 435-449.
[22]
Zengin, G.; Abdullah, K.; Mehmet, C.U.; Mehmet, S.; Kocak, C.S.; Gungor, H.; Carene, M.N.; Picotf, M.F. Phenolic content, antioxidant and enzyme inhibitory capacity of two Trametes species. RSC Advances, 2016, 6, 73351-73357.
[http://dx.doi.org/10.1039/C6RA09991B]
[23]
Mlinaric, A.; Kac, J.; Pohleven, F. Screening of selected wood-damaging fungi for the HIV-1 reverse transcriptase inhibitors. Acta Pharm., 2005, 55(1), 69-79.
[PMID: 15907225]
[24]
Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 2008, 15(8), 639-652.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[25]
Erawati, M.; Andriany, M.; Kusumaninrum, N.S.D. The potential of Ganoderma Lucidum as antimicrobial agent for multidrug- resistant Mycobacterium Tuberculosis. Antiinfect. Agents, 2018, 16(1), 11-14.
[http://dx.doi.org/10.2174/2211352516666180227135043]
[26]
Kim, Y.S.; Rym, K.H.; Lee, C.K.; Han, S.S. Antimicrobial activity of Elfvingia applanata extract alone and in combination with some antibiotics. J. Pharmaceut. Societ. Korea., 1994, 38, 742-748.
[27]
Chatterjee, D.; Halder, D.; Das, S. Synergistic activity of the antibiotic meropenem in combination with edible mushroom extracts against multidrug resistant bacteria. Br. J. Pharm. Res., 2016, 10(6)
[http://dx.doi.org/10.9734/BJPR/2016/24834]
[28]
Alves, M.J.; Ferreira, I.C.F.R.; Lourenço, I.; Castro, A.; Pereira, L.; Martins, A.; Pintado, M. Wild mushroom extracts potentiate the action of standard antibiotics against multiresistant bacteria. J. Appl. Microbiol., 2014, 116(1), 32-38.
[http://dx.doi.org/10.1111/jam.12348] [PMID: 24107088]
[29]
Yoon, S.Y.; Eo, S.K.; Kim, Y.S.; Lee, C.K.; Han, S.S. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch. Pharm. Res., 1994, 17(6), 438-442.
[http://dx.doi.org/10.1007/BF02979122] [PMID: 10319155]
[30]
Gbolagade, J.S.; Fasidi, I.O. Antimicrobial activities of some selected Nigerian mushrooms. Afr. J. Biomed. Res., 2005, 8(8), 3-87.
[31]
Ding, Y.; Wu, E.Q.; Liang, C.; Chen, J.; Tran, M.N.; Hong, C.H.; Jang, Y.; Park, K.L.; Bae, K.; Kim, Y.H.; Kang, J.S. Discrimination of cinnamon bark and cinnamon twig samples sourced from various countries using HPLC-based fingerprint analysis. Food Chem., 2011, 127(2), 755-760.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.011] [PMID: 23140731]
[32]
Agyare, C.; Koffuor, G.A.; Boamah, V.E.; Adu, F.; Mensah, K.B.; Adu-Amoah, L. Antimicrobial and anti-inflammatory activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae).Evid. Based Complement. Alt. Med; , 2012. Article ID 902394, 9 pages
[33]
Adu, F.; Sam, G.H.; Agyare, C.; Apenteng, J.A.; Boamah, V.E.; Ntinagyei-Mintah, D. Influence of methanol fruit and leaf extracts of Myristica fragrans (Myristicaceae) on the activity of some antibiotics. Afr. J. Microbiol. Res., 2014, 8(19), 1982-198.
[http://dx.doi.org/10.5897/AJMR2014.6801]
[34]
Umeh, E.U.; Oluma, H.O.A.; Igoli, O. Antibacterial screening of four local plants using an indicator-based microdilution technique. Afri. J. Complement. Alt. Med., 2005, 2(3), 238-243.
[35]
Jinming, G.; Lin, H.; Jikai, L. A novel sterol from Chinese truffles Tuber indicum. Steroids, 2001, 66(10), 771-775.
[http://dx.doi.org/10.1016/S0039-128X(01)00105-2] [PMID: 11522340]
[36]
Li, Y.; Ye, D.; Shao, Z.; Cui, C.; Che, Y. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar. Drugs, 2012, 10(2), 497-508.
[http://dx.doi.org/10.3390/md10020497] [PMID: 22412815]
[37]
Kim, M.K.; Math, R.K.; Cho, K.M.; Shin, K.J.; Kim, J.O.; Ryu, J.S.; Lee, Y.H.; Yun, H.D. Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresour. Technol., 2008, 99(8), 3306-3308.
[http://dx.doi.org/10.1016/j.biortech.2007.06.039] [PMID: 17698350]
[38]
Balan, V.; Munafo, J.P.J.; Pattathil, S.; Merritt, B.B.; Sivasankari, V. Ng., W.-O. Protocols to evaluate the nutritional and potential health benefits of edible mushrooms. Curr. Biotechnol., 2018, 7(1), 34-58.
[http://dx.doi.org/10.2174/2211550105666160503170750]
[39]
Kundaković, T.; Kolundžić, M. Therapeutic properties of mushrooms in managing adverse effects in the metabolic syndrome. Curr. Top. Med. Chem., 2013, 13(21), 2734-2744.
[http://dx.doi.org/10.2174/15680266113136660196] [PMID: 24083790]
[40]
Lawal, T.O.; Wicks, S.M.; Mahady, G.B. Ganoderma lucidum (Ling-zhi): The impact of chemistry on biological activity in cancer. Curr. Bioact. Compd., 2017, 13(1), 28-40.
[http://dx.doi.org/10.2174/1573407212666160614074801]
[41]
Sharma, D.; Singh, V.P.; Singh, N.K. A Review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini-Reviews in Medicin. Mini Rev. Med. Chem., 2018, 18(13), 1095-1109.
[http://dx.doi.org/10.2174/1389557517666170927144119] [PMID: 28971768]
[42]
Leliebre-Lara, V.; Garcia, M.; Nogueiras, C.L.M. Qualitative analysis of an ethanolic extract from Trametes versicolor and biological screening against Leishmania amazonensis. Emir. J. Food Agric., 2015, 27(7), 10-12.
[43]
Ceccherelli, P.; Fringuelli, R.; Madruzza, G.F. Cerevisterol and ergosterol peroxide from Acremonium luzulae. Phytochemistry, 1975, 14(5-6), 1434.
[http://dx.doi.org/10.1016/S0031-9422(00)98646-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy