Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Characterization of Nostoc muscorum NCCU-442 Derived Poly-3- hydroxybutyrate (PHB) and Polyethylene Glycol (PEG) Blends

Author(s): Sabbir Ansari* and Tasneem Fatma

Volume 10, Issue 3, 2020

Page: [200 - 207] Pages: 8

DOI: 10.2174/2210315508666180810145127

Price: $65

Abstract

Background: Poly-3-hydroxybutyrate (PHB) has attracted much consideration as biodegradable biocompatible polymer. This thermoplastic polymer has comparable material properties to polypropylene. Materials with more valuable properties may result from blending, a common practice in polymer science.

Objective: In this paper, blends of PHB (extracted from cyanobacterium Nostoc muscorum NCCU- 442 with polyethylene glycol (PEG) were investigated for their thermal, tensile, hydrophilic and biodegradation properties.

Methods: Blends were prepared in different proportions of PHB/PEG viz. 100/0, 98/2, 95/5, 90/10, 80/20, and 70/30 (wt %) using solvent casting technique. Morphological properties were investigated by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry and thermogravimetric analysis were done for thermal properties determination whereas the mechanical and hydrophilic properties of the blends were studied by means of an automated material testing system and contact angle analyser respectively. Biodegradability potential of the blended films was tested as percent weight loss by mixed microbial culture within 60 days.

Results: The blends showed good misciblity between PEG and PHB, however increasing concentrations of plasticizer caused morphological alteration as evidenced by SEM micrographs. PEG addition (10 % and above) showed significant alternations in the thermal properties of the blends. Increase in the PEG content increased the elongation at break ratio i.e enhanced the required plasticity of PHB. Rate of microbial facilitated degradation of the blends was greater with increasing PEG concentrations.

Conclusions: Blending with PEG increased the crucial polymeric properties of cyanobacterial PHB.

Keywords: Biodegradable plastics, Polyhydroxybutyrate (PHB), cyanobacteria, Polyethylene Glycol (PEG), plasticizer, material properties.

Graphical Abstract

[1]
Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: current consensus and future trends. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2153-2166.
[http://dx.doi.org/10.1098/rstb.2009.0053] [PMID: 19528062]
[2]
Lee, S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng.,, 1996, 49(1), 1-14.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1 ‹1::AID-BIT1›3.0.CO;2-P ] [PMID: 18623547]
[3]
Anderson, A.J.; Dawes, E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev., 1990, 54(4), 450-472.
[http://dx.doi.org/10.1128/MMBR.54.4.450-472.1990] [PMID: 2087222]
[4]
Stal, L.J. Poly(hydroxyalkanoates) in cyanobacteria: A review. FEMS Microbiol. Rev., 1992, 103, 169-180.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05835.x]
[5]
Steinbüchel, A.; Füchtenbusch, B. Bacterial and other biological systems for polyester production. Trends Biotechnol., 1998, 16(10), 419-427.
[http://dx.doi.org/10.1016/S0167-7799(98)01194-9] [PMID: 9807839]
[6]
Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng., 2010, 110(6), 621-632.
[http://dx.doi.org/10.1016/j.jbiosc.2010.07.014] [PMID: 20719562]
[7]
Ansari, S.; Fatma, T. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS One, 2016, 11(6)e0158168
[http://dx.doi.org/10.1371/journal.pone.0158168] [PMID: 27359097]
[8]
Bhati, R.; Samantaray, S.; Sharma, L.; Mallick, N. Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy Biotechnol. J., 2010, 5(11), 1181-1185.
[http://dx.doi.org/10.1002/biot.201000252] [PMID: 20949541]
[9]
Ahad, R.I.A.; Goswami, S.; Syiem, M.B. Biosorption and equilibrium isotherms study of cadmium removal by NostocmuscorumMeg 1: Morphological, physiological and biochemical alteration. 3 Biotech, 2017, 7, 104.
[10]
Diengdoh, O.L.; Syiem, M.B.; Pakshirajan, K.; Rai, A.N. Zn2+ sequestration by Nostoc muscorum: study of thermodynamics, equilibrium isotherms, and biosorption parameters for the metal. Environ. Monit. Assess., 2017, 189(7), 314.
[http://dx.doi.org/10.1007/s10661-017-6013-4] [PMID: 28589456]
[11]
Arcana, I.M.; Sulaeman, A.; Pandiangan, K.D.; Handoko, A.; Ledyastuti, M. Synthesis of polyblends from polypropylene and poly(R,S)-β-hydroxybutyrate, and their characterization. Polym. Int., 2006, 55, 435-440.
[http://dx.doi.org/10.1002/pi.1994]
[12]
Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol., 2007, 82, 233-247.
[http://dx.doi.org/10.1002/jctb.1667]
[13]
Li, Z.; Yang, J.; Loh, Z.J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater., 2016, 8e328
[http://dx.doi.org/10.1038/am.2016.48]
[14]
Luo, W.; Li, S.; Bei, J.; Wang, S. Synthesis and characterization of poly (L-lactide)-poly(ethylene glycol) multiblock copolymers. J. Appl. Polym. Sci., 2002, 84, 1729-1736.
[http://dx.doi.org/10.1002/app.10580]
[15]
Anderson, K.S.; Schreck, K.M.; Hillmyer, M.A. Toughening poylylactide. Polym. Rev. (Phila. Pa.), 2008, 48, 85-108.
[http://dx.doi.org/10.1080/15583720701834216]
[16]
Rodrigues, J.A.F.R.; Parra, D.F.; Lugao, A.B. Crystallization on films of PHB/PEG blends evaluation by DSC. J. Therm. Anal. Calorim., 2005, 79, 379-381.
[http://dx.doi.org/10.1007/s10973-005-0069-z]
[17]
Parra, D.F.; Fusaro, J.; Gaboardi, F.; Rosa, D.S. Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physical-chemical and biodegradation properties of poly (3-hydroxybutyrate). Polym. Degrad. Stabil., 2006, 91, 1954-1959.
[http://dx.doi.org/10.1016/j.polymdegradstab.2006.02.008]
[18]
Barham, P.J.; Feller, A.; Otun, E.L.; Holmes, P.A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mater. Sci., 1984, 19, 2781-2794.
[http://dx.doi.org/10.1007/BF01026954]
[19]
Alves, V.D.; Ferreira, A.R.; Costa, N.; Freitas, F.; Reis, M.A.M.; Coelhoso, I.M. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym., 2011, 83, 1582-1590.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.010]
[20]
Godbole, S.; Gote, S.; Latkar, M.; Chakrabarti, T. Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films. Bioresour. Technol., 2003, 86(1), 33-37.
[http://dx.doi.org/10.1016/S0960-8524(02)00110-4] [PMID: 12421006]
[21]
Chan, R.T.H.; Marçal, H.; Russell, R.A.; Holden, P.J.; Foster, L.J.R. Application of polyethylene glycol to promote cellular biocompatibility of polyhydroxybutyrate films. Int. J. Polym. Sci., 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/473045]
[22]
Van der Walle, G.A.; de Koning, G.J.M.; Weusthuis, R.A.; Eggink, G. Properties, modifications and applications of biopolyesters. In: Advances in Biochemical engineering/Biotechnology; Scheper, T. Ed.; Springer: Verlag: Berlin. , 2001; pp. 263-291.
[http://dx.doi.org/10.1007/3-540-40021-4_9]
[23]
Yoshie, N.; Nakasato, K.; Fujiwara, M.; Kasuya, K.; Abe, H.; Doi, Y. Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer (Guildf.), 2000, 41, 3227-3234.
[http://dx.doi.org/10.1016/S0032-3861(99)00547-9]
[24]
Bonartseva, G.A.; Myshkina, V.L.; Nikolaeva, D.A.; Kevbrina, M.V.; Kallistova, A.Y.; Gerasin, V.A.; Iordanskii, A.L.; Nozhevnikova, A.N. Aerobic and anaerobic microbial degradation of poly-β-hydroxybutyrate produced by Azotobacter chroococcum. Appl. Biochem. Biotechnol., 2003, 109(1-3), 285-301.
[http://dx.doi.org/10.1385/ABAB:109:1-3:285] [PMID: 12794301]
[25]
Cheng, G.X.; Wang, T.Z.; Zhao, Q.; Ma, X.L.; Zhang, L.G. Preparation of cellulose acetate butyrate and poly(ethylene glycol) copolymers to blend with poly(3-hydroxybutyrate). J. Appl. Polym. Sci., 2006, 100, 1471-1478.
[http://dx.doi.org/10.1002/app.23135]
[26]
Tan, S.M.; Ismail, J.; Kummerlöwe, C.; Kammer, H.W. Crystallization and melting behavior of blends comprising poly(3-hydroxybutyrate-co-3-hydroxy valerate) and poly(ethylene oxide). J. Appl. Polym. Sci., 2006, 101, 2776-2783.
[http://dx.doi.org/10.1002/app.21921]
[27]
Grassie, N.; Murray, E.J.; Holmes, P.A. The thermal degradation of Poly(-(d)-β-hydroxybutyric Acid): Part 3-The reaction mechanism. Polym. Degrad. Stabil., 1984, 6, 127-134.
[http://dx.doi.org/10.1016/0141-3910(84)90032-6]
[28]
Carraher, C.E., Jr Polymer Chemistry: An Introduction, 4th ed; Marcel Dekker: New York, 1996.
[29]
Callister, W.D., Jr Materials science and engineering: An introduction, 4th ed; John Wiley & Sons, Inc: New York, 1997, pp. 466-472.
[30]
Zavareze, Eda.R.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat-moisture treated potato starch film. Food Chem., 2012, 132(1), 344-350.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.090] [PMID: 26434300]
[31]
Seggiania, M.; Cinellib, P.; Verstichelc, S.; Puccinia, M.; Vitoloa, S.; Anguillesia, I.; Lazzeria, A. Development of fibres-reinforced biodegradable composites. Chem. Eng. Trans., 2015, 43, 1813-1818.
[32]
Yuan, Y.; Lee, T.R. Contact angle and wetting properties.Surface Science Techniques; Bracco, G; Holst, B., Ed.; Springer: Heidelberg, Germany, 2013, pp. 3-34.
[http://dx.doi.org/10.1007/978-3-642-34243-1_1]
[33]
Cheng, G.; Cai, Z.; Wang, L. Biocompatibility and biodegradation of poly(hydroxybutyrate)/poly(ethylene glycol) blend films. J. Mater. Sci. Mater. Med., 2003, 14(12), 1073-1078.
[http://dx.doi.org/10.1023/B:JMSM.0000004004.37103.f4] [PMID: 15348500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy